Persistent homology of fractional Gaussian noise

被引:9
作者
Masoomy, H. [1 ]
Askari, B. [1 ]
Najafi, M. N. [2 ]
Movahed, S. M. S. [1 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 1983969411, Iran
[2] Univ Mohaghegh Ardabili, Dept Phys, POB 179, Ardebil, Iran
关键词
DETRENDED FLUCTUATION ANALYSIS; TIME-SERIES; VISIBILITY GRAPH; COMPLEX NETWORKS; TOPOLOGY; TRENDS;
D O I
10.1103/PhysRevE.104.034116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we employ the persistent homology (PH) technique to examine the topological properties of fractional Gaussian noise (fGn). We develop the weighted natural visibility graph algorithm, and the associated simplicial complexes through the filtration process are quantified by PH. The evolution of the homology group dimension represented by Betti numbers demonstrates a strong dependency on the Hurst exponent (H). The coefficients of the birth and death curves of the k-dimensional topological holes (k-holes) at a given threshold depend on H which is almost not affected by finite sample size. We show that the distribution function of a lifetime for k-holes decays exponentially and the corresponding slope is an increasing function versus H and, more interestingly, the sample size effect completely disappears in this quantity. The persistence entropy logarithmically grows with the size of the visibility graph of a system with almost H-dependent prefactors. On the contrary, the local statistical features are not able to determine the corresponding Hurst exponent of fGn data, while the moments of eigenvalue distribution (Mn) for n 1 reveal a dependency on H, containing the sample size effect. Finally, the PH shows the correlated behavior of electroencephalography for both healthy and schizophrenic samples.
引用
收藏
页数:15
相关论文
共 71 条
[1]  
Adams H, 2017, J MACH LEARN RES, V18
[2]   New diagnostic EEG markers of the Alzheimer's disease using visibility graph [J].
Ahmadlou, Mehran ;
Adeli, Hojjat ;
Adeli, Anahita .
JOURNAL OF NEURAL TRANSMISSION, 2010, 117 (09) :1099-1109
[3]   Planck 2018 results: IX. Constraints on primordial non-Gaussianity [J].
Akrami, Y. ;
Arroja, F. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fergusson, J. ;
Fernandez-Cobos, R. ;
Finelli, F. ;
Frailis, M. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]  
[Anonymous], 2005, ALGEBRAIC TOPOLOGY
[5]   Persistent entropy for separating topological features from noise in vietoris-rips complexes [J].
Atienza, Nieves ;
Gonzalez-Diaz, Rocio ;
Rucco, Matteo .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2019, 52 (03) :637-655
[6]   Network geometry with flavor: From complexity to quantum geometry [J].
Bianconi, Ginestra ;
Rahmede, Christoph .
PHYSICAL REVIEW E, 2016, 93 (03)
[7]   Homological percolation and the Euler characteristic [J].
Bobrowski, Omer ;
Skraba, Primoz .
PHYSICAL REVIEW E, 2020, 101 (03)
[8]   A persistence landscapes toolbox for topological statistics [J].
Bubenik, Peter ;
Dlotko, Pawel .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 :91-114
[9]  
Carlsson G., 2005, INT J SHAPE MODELING, V11, P149, DOI DOI 10.1145/1057432.1057449
[10]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308