A qualitative Phragmen-Lindelof theorem for fully nonlinear elliptic equations

被引:29
作者
Dolcetta, I. Capuzzo [1 ]
Vitolo, A. [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
关键词
fully nonlinear elliptic equations; Phragmen-Lindelof type theorems;
D O I
10.1016/j.jde.2007.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish qualitative results of Phragmen-Lindelof type for upper semicontinuous viscosity solutions of fully nonlinear partial differential inequalities of the second order in general unbounded domains of R-n. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:578 / 592
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[2]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[3]  
2-6
[4]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[5]  
Berestycki H., 1997, ANN SCUOLA NORM SU S, V25, P69
[7]   On the maximum principle for second-order elliptic operators in unbounded domains [J].
Cafagna, V ;
Vitolo, A .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (05) :359-363
[8]  
Caffarelli L. A., 1995, AM MATH SOC C PUBL, V43
[9]   The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains [J].
Capuzzo-Dolcetta, I ;
Leoni, F ;
Vitolo, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (12) :1863-1881
[10]  
Crandall M., 1992, B AM MATH SOC, V27