Generalised point vortices on a plane

被引:3
作者
Galajinsky, Anton [1 ]
机构
[1] Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia
关键词
Point vortices; Integrable systems; Scale symmetry; Supersymmetry;
D O I
10.1016/j.physletb.2022.137119
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Point vortex dynamics: A classical mathematics playground [J].
Aref, Hassan .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[2]  
Bolsinov A. V., 1999, REG CHAOT MECH, V4, P23, DOI DOI 10.1070/RD1999V004N01ABEH000097
[3]  
Borisov A. V., 2005, MATH METHODS DYNAMIC
[4]   INTEGRABLE 4 VORTEX MOTION [J].
ECKHARDT, B .
PHYSICS OF FLUIDS, 1988, 31 (10) :2796-2801
[5]   Remarks on N=1 supersymmetric extension of the Euler top [J].
Galajinsky, Anton .
NUCLEAR PHYSICS B, 2022, 975
[6]  
Grobli W., 1877, Specielle Probleme uber die Bewegung geradliniger paralleler Wirbelfaden
[7]  
Helmholtz H., 1858, Journal fur die reine und angewandte Mathematik, V55, P25, DOI DOI 10.1515/CRLL.1858.55.25
[8]  
Kirchhoff G, 1876, VORLESUNGEN MECHANIK
[9]   INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS [J].
KOZLOV, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) :1-76
[10]  
Modin K., ARNOLD MATH J, V7, P357