Chebyshev representation for rational functions

被引:15
作者
Bogatyrev, A. B. [1 ,2 ]
机构
[1] RAS, Inst Numer Math, Moscow, Russia
[2] State Univ, Moscow Inst Phys & Technol, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
rational approximation; Zolotarev fraction; Riemann surfaces; Abelian integrals;
D O I
10.1070/SM2010v201n11ABEH004123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An effective representation is obtained for rational functions all of whose critical points, apart from g-1, are simple and their corresponding critical values lie in a four-element set. Such functions are described using hyperelliptic curves of genus g >= 1. The classical Zolotarev fraction arises in this framework for g = 1.
引用
收藏
页码:1579 / 1598
页数:20
相关论文
共 8 条
[1]  
ABEL NH, 1826, J REINE ANGEW MATH, V1, P105
[2]  
ACHIESER NI, 1965, THEORY APPROXIMATION
[3]   Effective approach to least deviation problems [J].
Bogatyrev, AB .
SBORNIK MATHEMATICS, 2002, 193 (11-12) :1749-1769
[4]   Effective computation of Chebyshev polynomials for several intervals [J].
Bogatyrëv, AB .
SBORNIK MATHEMATICS, 1999, 190 (11-12) :1571-1605
[5]  
BOGATYREV AB, 2005, EXTREMAL POLYNOMIALS
[6]  
CHEBOTAREV NG, 2003, THEORY ALGEBRAIC FUN
[7]  
FOMENKO AT, 1989, COURSE HOMOTOPIC TOP
[8]  
ZOLOTAREV EI, 1877, ZAP S PETERSBURG AKA, V30