Hamiltonian neural networks for solving equations of motion

被引:43
作者
Mattheakis, Marios [1 ]
Sondak, David [1 ]
Dogra, Akshunna S. [1 ,2 ,3 ]
Protopapas, Pavlos [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
[3] EPSRC CDT Math Random Syst Anal Modelling & Algor, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
DEEP; PHYSICS;
D O I
10.1103/PhysRevE.105.065305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
There has been a wave of interest in applying machine learning to study dynamical systems. We present a Hamiltonian neural network that solves the differential equations that govern dynamical systems. This is an equation-driven machine learning method where the optimization process of the network depends solely on the predicted functions without using any ground truth data. The model learns solutions that satisfy, up to an arbitrarily small error, Hamilton???s equations and, therefore, conserve the Hamiltonian invariants. The choice of an appropriate activation function drastically improves the predictability of the network. Moreover, an error analysis is derived and states that the numerical errors depend on the overall network performance. The Hamiltonian network is then employed to solve the equations for the nonlinear oscillator and the chaotic H??non-Heiles dynamical system. In both systems, a symplectic Euler integrator requires two orders more evaluation points than the Hamiltonian network to achieve the same order of the numerical error in the predicted phase space trajectories.
引用
收藏
页数:11
相关论文
共 49 条
  • [1] Modeling the effect of the vaccination campaign on the COVID-19 pandemic
    Angeli, Mattia
    Neofotistos, Georgios
    Mattheakis, Marios
    Kaxiras, Efthimios
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 154
  • [2] [Anonymous], 1918, GOTT NACHR, DOI [10.1080/00411457108231446 [physics/0503066, DOI 10.1080/00411457108231446[PHYSICS/0503066]
  • [3] Learning data-driven discretizations for partial differential equations
    Bar-Sinai, Yohai
    Hoyer, Stephan
    Hickey, Jason
    Brenner, Michael P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (31) : 15344 - 15349
  • [4] On learning Hamiltonian systems from data
    Bertalan, Tom
    Dietrich, Felix
    Mezic, Igor
    Kevrekidis, Ioannis G.
    [J]. CHAOS, 2019, 29 (12)
  • [5] Physics-enhanced neural networks learn order and chaos
    Choudhary, Anshul
    Lindner, John F.
    Holliday, Elliott G.
    Miller, Scott T.
    Sinha, Sudeshna
    Ditto, William L.
    [J]. PHYSICAL REVIEW E, 2020, 101 (06)
  • [6] Variational integrator graph networks for learning energy-conserving dynamical systems
    Desai, Shaan A.
    Mattheakis, Marios
    Roberts, Stephen J.
    [J]. PHYSICAL REVIEW E, 2021, 104 (03)
  • [7] Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
    Desai, Shaan A.
    Mattheakis, Marios
    Sondak, David
    Protopapas, Pavlos
    Roberts, Stephen J.
    [J]. PHYSICAL REVIEW E, 2021, 104 (03)
  • [8] Turbulence Modeling in the Age of Data
    Duraisamy, Karthik
    Iaccarino, Gianluca
    Xiao, Heng
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 51, 2019, 51 : 357 - 377
  • [9] Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow
    Fang, Rui
    Sondak, David
    Protopapas, Pavlos
    Succi, Sauro
    [J]. JOURNAL OF TURBULENCE, 2020, 21 (9-10): : 525 - 543
  • [10] Gander M.J., 2015, MULTIPLE SHOOTING TI, V9, P69, DOI [10.1007/978-3-319-23321-5_3, DOI 10.1007/978-3-319-23321-5_3]