Modelling exciton diffusion in disordered conjugated polymers

被引:6
作者
Athanasopoulos, S. [1 ]
Emelianova, E. V. [1 ]
Walker, A. B. [2 ]
Beljonne, D. [1 ]
机构
[1] Univ Mons, Lab Chem Novel Mat, Pl Parc 20, B-7000 Mons, Belgium
[2] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
来源
ORGANIC PHOTONICS IV | 2010年 / 7722卷
关键词
Exciton diffusion; conjugated polymers; energetic disorder; Monte Carlo simulations; quantum-chemical calculations; analytical model; ENERGY-TRANSFER; SPECTROSCOPY; MIGRATION; TRANSPORT;
D O I
10.1117/12.854434
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a combined quantum-chemical and Monte Carlo approach for calculating exciton transport properties in disordered organic materials starting from the molecular scale. We show that traps and energetic disorder are the main limitations for exciton diffusion in conjugated polymers. An analytical model for exciton hopping in a medium of sites with uncorellated energetic disorder gives a quantitative description on the dependence of the diffusion length to both the energetic disorder strength and temperature. We demonstrate how traps and energetic disorder can pin down the diffusion length in conjugated polymers to values below 10 nm.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Deep defect levels and exciton dissociation in conjugated polymers [J].
Meng, HF ;
Hong, TM .
PHYSICA B-CONDENSED MATTER, 2001, 304 (1-4) :119-136
[22]   Limit of Exciton Diffusion in Highly Ordered π-Conjugated Systems [J].
de Oliveira Neto, Pedro Henrique ;
da Silva Filho, Demetrio A. ;
da Cunha, Wiliam F. ;
Acioli, Paulo H. ;
Magela e Silvat, Geraldo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (34) :19654-19659
[23]   Exciton diffusion and dissociation in conjugated polymer/fullerene heterostructures [J].
Markov, DE ;
Amsterdam, E ;
Blom, PWM ;
Sieval, AB ;
Hummelen, JC .
ORGANIC OPTOELECTRONICS AND PHOTONICS, 2004, 5464 :449-454
[24]   Exciton formation as a rate limiting step for charge recombination in disordered organic molecules or polymers [J].
Preezant, Yevgeni ;
Tessler, Nir .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (01)
[25]   Influence of alkoxy substituents on the exciton binding energy of conjugated polymers [J].
Rossi, L ;
Alvarado, SF ;
Riess, W ;
Schrader, S ;
Lidzey, DG ;
Bradley, DDC .
SYNTHETIC METALS, 2000, 111 :527-530
[26]   Unravelling the effect of strand orientation on exciton migration in conjugated polymers [J].
Correia, H. M. G. ;
Barbosa, H. M. C. ;
Marques, L. ;
Ramos, M. M. D. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 75 :18-23
[27]   Dynamic dielectric screening and exciton binding energies in conjugated polymers [J].
Weibel, J ;
Yaron, D .
OPTICAL PROBES OF CONJUGATED POLYMERS, 1997, 3145 :272-281
[28]   Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers [J].
Ayzner, Alexander L. ;
Mei, Jianguo ;
Appleton, Anthony ;
DeLongchamp, Dean ;
Nardes, Alexandre ;
Benight, Stephanie ;
Kopidakis, Nikos ;
Toney, Michael F. ;
Bao, Zhenan .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (51) :28035-28041
[29]   Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps [J].
Zaikowski, Lori ;
Mauro, Gina ;
Bird, Matthew ;
Karten, Brianne ;
Asaoka, Sadayuki ;
Wu, Qin ;
Cook, Andrew R. ;
Miller, John R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (24) :7231-7241
[30]   Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers [J].
Roerich, Irina ;
Mikhnenko, Oleksandr V. ;
Gehrig, Dominik ;
Blom, Paul W. M. ;
Craciun, N. Irina .
JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (06) :1405-1412