Remark on near-horizon geometry of extreme regular black holes

被引:0
作者
Filyukov, Sergei [1 ]
机构
[1] Tomsk Polytech Univ, Lenin Ave 30, Tomsk 634050, Russia
关键词
Near-horizon geometry; regular black holes;
D O I
10.1142/S0217732318501973
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown that the near-horizon geometry of a generic extreme regular black hole solution of Einstein gravity coupled to nonlinear electrodynamics is described by the AdS(2) x S-2 spacetime.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nonlinear electrodynamics and regular black holes
    S. N. Sajadi
    N. Riazi
    General Relativity and Gravitation, 2017, 49
  • [22] Transforming singular black holes into regular black holes sourced by nonlinear electrodynamics
    Canate, Pedro
    Bergliaffa, Santiago Esteban Perez
    ANNALS OF PHYSICS, 2023, 454
  • [23] Bouncing cosmology inspired by regular black holes
    Neves, J. C. S.
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (09)
  • [24] Lagrangian reverse engineering for regular black holes
    Bokulic, Ana
    Franzin, Edgardo
    Juric, Tajron
    Smolic, Ivica
    PHYSICS LETTERS B, 2024, 854
  • [25] Bouncing cosmology inspired by regular black holes
    J. C. S. Neves
    General Relativity and Gravitation, 2017, 49
  • [26] Regular Black Holes with Asymptotically Minkowski Cores
    Simpson, Alex
    Visser, Matt
    UNIVERSE, 2020, 6 (01)
  • [27] Nonpolynomial Lagrangian approach to regular black holes
    Colleaux, Aimeric
    Chinaglia, Stefano
    Zerbini, Sergio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (03):
  • [28] Quantum improved regular Kerr black holes
    Chen, Chiang-Mei
    Chen, Yi
    Ishibashi, Akihiro
    Ohta, Nobuyoshi
    CHINESE JOURNAL OF PHYSICS, 2024, 92 : 766 - 778
  • [29] Observational optical constraints of regular black holes
    Jafarzade, Khadije
    Zangeneh, Mahdi Kord
    Lobo, Francisco S. N.
    ANNALS OF PHYSICS, 2022, 446
  • [30] Accretion disk around regular black holes
    Akbarieh, Amin Rezaei
    Khoshragbaf, Minou
    Atazadeh, Mohammad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,