ASYMPTOTIC ERROR EXPANSIONS FOR THE FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS IN RN, N ≥ 2. I: LOCAL INTERIOR EXPANSIONS

被引:13
作者
Asadzadeh, M. [1 ]
Schatz, A. H. [2 ]
Wendland, W. [3 ]
机构
[1] Chalmers Univ Technol, Dept Math, SE-41296 Gothenburg, Sweden
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[3] Univ Stuttgart, Inst Appl Anal & Numer Simulat, D-75069 Stuttgart, Germany
关键词
local estimates; interior expansions; asymptotic error expansion inequalities; similarity of subspaces; scaling; finite element method; elliptic equations; RICHARDSON EXTRAPOLATION; IRREGULAR GRIDS; APPROXIMATION; SUPERCONVERGENCE; INEQUALITIES; DOMAINS;
D O I
10.1137/080742737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim here is to give sufficient conditions on the finite element spaces near a point so that the error in the finite element method for the function and its derivatives at the point have exact asymptotic expansions in terms of the mesh parameter h, valid for h sufficiently small. Such expansions are obtained from the so-called asymptotic expansion inequalities valid in RN for N >= 2, studies by Schatz in [Math. Comp., 67 (1998), pp. 877-899] and [SIAM J. Numer. Anal., 38 (2000), pp. 1269-1293].
引用
收藏
页码:2000 / 2017
页数:18
相关论文
共 37 条
[1]  
[Anonymous], CISM INT CTR MECH SC
[2]   A NEW APPROACH TO RICHARDSON EXTRAPOLATION IN THE FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Asadzadeh, M. ;
Schatz, A. H. ;
Wendland, W. .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1951-1973
[3]   ASYMPTOTIC ERROR EXPANSION AND RICHARDSON EXTRAPOLATION FOR LINEAR FINITE-ELEMENTS [J].
BLUM, H ;
LIN, Q ;
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1986, 49 (01) :11-37
[4]  
BLUM H, 1988, NUMER MATH, V52, P539, DOI 10.1007/BF01400891
[5]  
BLUM H, 1987, Z ANGEW MATH MECH, V67, pT351
[7]  
CHEN CM, 1989, J COMPUT MATH, V7, P227
[8]   Pointwise error estimates for finite element solutions of the Stokes problem [J].
Chen, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :1-28
[9]  
CHEN H, 1993, E W J NUMER MATH, V1, P253
[10]  
Demlow A, 2004, MATH COMPUT, V73, P1195