Entropy of the Schwarzschild black hole to all orders in the Planck length

被引:84
作者
Kim, Yong-Wan
Park, Young-Jai [1 ]
机构
[1] Pai Chai Univ, Natl Creat Res Intiat Ctr Controll Opt Chaos, Taejon 302735, South Korea
[2] Sogang Univ, Dept Phys & Math Phys Grp, Seoul 121742, South Korea
关键词
generalized uncertainty principle; black hole entropy;
D O I
10.1016/j.physletb.2007.08.065
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Considering corrections to all orders in the Planck length on the quantum state density from a generalized uncertainty principle (CUP), we calculate the statistical entropy of the scalar field on the background of the Schwarzschild black hole without any cutoff . We obtain the entropy of the massive scalar field proportional to the horizon area. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:172 / 177
页数:6
相关论文
共 68 条
[1]   Stability and thermodynamics of brane black holes [J].
Abdalla, E. ;
Cuadros-Melgar, B. ;
Pavan, A. B. ;
Molina, C. .
NUCLEAR PHYSICS B, 2006, 752 (1-2) :40-59
[2]   Black hole entropy by the brick-wall method in four and five dimensions with U(1) charges [J].
Abdalla, E ;
Correa-Borbonet, LA .
MODERN PHYSICS LETTERS A, 2001, 16 (39) :2495-2503
[3]   The generalized uncertainty principle and black hole remnants [J].
Adler, RJ ;
Chen, PS ;
Santiago, DI .
GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (12) :2101-2108
[4]   Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles [J].
Amelino-Camelia, G ;
Arzano, M ;
Ling, Y ;
Mandanici, G .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (07) :2585-2606
[5]  
Amelino-Camelia G, 2005, LECT NOTES PHYS, V641, P59, DOI 10.1007/11377306_3
[6]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[7]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[8]   Entropy of scalar fields in Reissner-Nordstrom-(anti-)de Sitter spacetimes [J].
Cai, RG ;
Zhang, YZ .
MODERN PHYSICS LETTERS A, 1996, 11 (25) :2027-2036
[9]   Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[10]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359