A novel approach for load profiling in smart power grids using smart meter data

被引:27
|
作者
Khan, Zafar A. [1 ]
Jayaweera, Dilan [1 ]
Alvarez-Alvarado, Manuel S. [1 ]
机构
[1] Univ Birmingham, Dept Elect Elect & Syst Engn, Birmingham B15 2TT, W Midlands, England
关键词
Load modelling; Load profiling; Particle swarm optimization; Stochastic modelling; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.epsr.2018.09.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Increasing penetration of distributed energy resources, varying load demands and big data of smart meters require new load models to support power system studies. The big data of smart meters and non-linearities in the load demand require the smart meter data to be represented in an alternative way to use in stochastic simulations to enhance processing. This paper proposes a novel method for stochastic load modelling of smart meter data. The approach turns smart meter data to a manageable level by linearizing energy consumption patterns producing energy classifications. A case study, using real world smart meter data, simulated scenarios to prove the robustness and accuracy of the method. The accuracy of results validates the stability and robustness of the approach and model validation provided substantiation for application in probabilistic studies.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条
  • [41] Integration of Clustering Power Systems Approach and Data Management Infrastructure for Smart Grids
    Ortjohann, E.
    Leksawat, S.
    Schmelter, A.
    Wirasanti, P.
    Holtschulte, D.
    Morton, D.
    2014 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2014, : 1278 - 1283
  • [42] Power Consumption Profiling Using Energy Time-Frequency Distributions in Smart Grids
    Marnerides, Angelos K.
    Smith, Paul
    Schaeffer-Filho, Alberto
    Mauthe, Andreas
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (01) : 46 - 49
  • [43] Smart Meter Profiling For Health Applications
    Chalmers, Carl
    Hurst, William
    Mackay, Michael
    Fergus, Paul
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [44] A Non-intrusive Approach for Smart Power Meter
    Tavares, Hugo
    Prado, Bruno
    Bispo, Kalil
    Dantas, Daniel
    2018 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2018, : 605 - 610
  • [45] Kernel-Based Non-parametric Clustering for Load Profiling of Big Smart Meter Data
    Pan, Erte
    Li, Husheng
    Song, Lingyang
    Han, Zhu
    2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2015, : 2251 - 2255
  • [46] Campus Load Profiles from Enhanced Smart Meter Data
    Toma, Ana-Ruxandra
    Olteanu, Mihai Valentin
    Dumitrescu, Ana-Maria
    2019 54TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2019,
  • [47] POWER DISTRIBUTION SYSTEM OBSERVABILITY WITH SMART METER DATA
    Bhela, Siddharth
    Kekatos, Vassilis
    Veeramachaneni, Sriharsha
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1070 - 1074
  • [48] Household Classification Using Smart Meter Data
    Carroll, Paula
    Murphy, Tadhg
    Hanley, Michael
    Dempsey, Daniel
    Dunne, John
    JOURNAL OF OFFICIAL STATISTICS, 2018, 34 (01) : 1 - 25
  • [49] Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data
    Ullah, Amin
    Haydarov, Kilichbek
    Ul Haq, Ijaz
    Muhammad, Khan
    Rho, Seungmin
    Lee, Miyoung
    Baik, Sung Wook
    SENSORS, 2020, 20 (03)
  • [50] Electric Vehicle Charging Identification and Profiling Using Australian Residential Smart Meter Data
    Rahman, Mir Toufikur
    Hasan, Kazi N.
    Rosengarten, Gary
    2023 33RD AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE, AUPEC, 2023,