A novel approach for load profiling in smart power grids using smart meter data

被引:27
|
作者
Khan, Zafar A. [1 ]
Jayaweera, Dilan [1 ]
Alvarez-Alvarado, Manuel S. [1 ]
机构
[1] Univ Birmingham, Dept Elect Elect & Syst Engn, Birmingham B15 2TT, W Midlands, England
关键词
Load modelling; Load profiling; Particle swarm optimization; Stochastic modelling; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.epsr.2018.09.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Increasing penetration of distributed energy resources, varying load demands and big data of smart meters require new load models to support power system studies. The big data of smart meters and non-linearities in the load demand require the smart meter data to be represented in an alternative way to use in stochastic simulations to enhance processing. This paper proposes a novel method for stochastic load modelling of smart meter data. The approach turns smart meter data to a manageable level by linearizing energy consumption patterns producing energy classifications. A case study, using real world smart meter data, simulated scenarios to prove the robustness and accuracy of the method. The accuracy of results validates the stability and robustness of the approach and model validation provided substantiation for application in probabilistic studies.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条
  • [21] Hardware Design of a Smart Meter Communication Interface for Smart Grids
    Kintzel, William Richard
    Mattos, Mauro Marcelo
    Borges, Altamir Rosani
    COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS, CISIS-2017, 2018, 611 : 371 - 383
  • [22] Advanced integration of IoT and AI algorithms for comprehensive smart meter data analysis in smart grids
    Wang, Qing
    Li, Guimin
    Xia, Xiaodong
    Jing, Zhen
    Zhang, Zhi
    Nonlinear Engineering, 2024, 13 (01)
  • [23] Production Scheduling Identification: An Inverse Optimization Approach for Industrial Load Modeling Using Smart Meter Data
    Lyu, Ruike
    Guo, Hongye
    Tang, Qinghu
    Chen, Qixin
    Kang, Chongqing
    IEEE TRANSACTIONS ON SMART GRID, 2025, 16 (02) : 1207 - 1220
  • [24] Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review
    Dewangan, Fanidhar
    Abdelaziz, Almoataz Y.
    Biswal, Monalisa
    ENERGIES, 2023, 16 (03)
  • [25] Prediction of breakdowns in smart grids: a novel approach
    Khediri, Abderrazak
    Laouar, Mohamed Ridda
    ACM PROCEEDINGS OF INTERNATIONAL CONFERENCE OF COMPUTING FOR ENGINEERING AND SCIENCE (ICCES'17), 2017, : 82 - 85
  • [26] An approach for secure data transmission in smart grids
    Pandey, Jagdish Chandra
    Kalra, Mala
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2023, 20 (3-4) : 348 - 365
  • [27] Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data
    Ponocko, Jelena
    Milanovic, Jovica V.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 5446 - 5455
  • [28] Smart Power Grids
    Iyer, Gopalakrishnan
    Agrawal, Prathima
    2010 42ND SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 2010,
  • [29] Estimation of Voltage Sensitivities to Power Injections using Smart Meter Data
    Valverde, G.
    Zufferey, T.
    Karagiannopoulos, S.
    Hug, G.
    2018 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2018,
  • [30] Load modeling from smart meter data using neural network methods
    Kianpoor, Nasrin
    Hoff, Bjarte
    Ostrem, Trond
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2021, : 611 - 616