Anomaly detection in blockchain using network representation and machine learning

被引:21
作者
Martin, Kevin [1 ]
Rahouti, Mohamed [2 ]
Ayyash, Moussa [3 ]
Alsmadi, Izzat [4 ]
机构
[1] Syracuse Univ, Engn & Comp Sci, Syracuse, NY USA
[2] Fordham Univ, Dept Comp & Informat Sci, Lincoln Ctr Campus,113 West 60th St, New York, NY 10023 USA
[3] Chicago State Univ, Comp Informat & Math Sci & Technol, Chicago, IL USA
[4] Texas A&M Univ, Dept Comp & Cyber Secur, San Antonio, TX USA
关键词
blockchain; cryptocurrency; graph algorithms; machine learning; network embedding;
D O I
10.1002/spy2.192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The vast majority of digital currency transactions rely on a blockchain framework to ensure quick and accurate execution. As such, understanding how a blockchain works is vital to understanding the dynamics of cryptocurrency operations. One of the key benefits of this type of system is the exhaustive records captured in a given marketplace. The interwoven movement between agents can effectively be expressed as a graph via the extraction of historical data from the blockchain. By looking at a specific blockchain as an interaction of its agents, network representation learning can be leveraged to examine these relationships. Furthermore, the analysis of a graph structure can be enhanced through the application of modern and sophisticated machine learning techniques. Leveraging the automated nature of these methods can create meaningful observations of the input network. In this paper, we utilize several machine learning models to detect anomalous transactions in various digital currency markets. We find that supervised learning techniques yield encouraging results, whereas unsupervised learning techniques struggle more with the classification.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A survey on cognitive radio network attack mitigation using machine learning and blockchain
    Ezhilarasi, I. Evelyn
    Clement, J. Christopher
    Arul, Joseph M.
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [32] Unsupervised machine learning for network-centric anomaly detection in IoT
    Bhatia, Randeep
    Benno, Steven
    Esteban, Jairo
    Lakshman, T., V
    Grogan, John
    BIG-DAMA'19: PROCEEDINGS OF THE 3RD ACM CONEXT WORKSHOP ON BIG DATA, MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE FOR DATA COMMUNICATION NETWORKS, 2019, : 42 - 48
  • [33] Network Encryption Traffic Anomaly Detection Based on Integrated Machine Learning
    Yang, Xiaoqing
    Angkawisittpan, Niwat
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2025, 32 (02): : 713 - 722
  • [34] Machine Learning Enhanced Entropy-Based Network Anomaly Detection
    Timcenko, Valentina
    Gajin, Slavko
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2021, 21 (04) : 51 - 60
  • [35] Corporate network anomaly detection methodology utilizing machine learning algorithms
    Baisholan, Nazerke
    Baisholanova, Karlygash
    Kubayev, Kazila
    Alimzhanova, Zhanna
    Baimuldina, Nazira
    SMART SCIENCE, 2024, 12 (04) : 666 - 678
  • [36] Analysis of Machine Learning Application in Campus Network Traffic Anomaly Detection
    Li R.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [37] IDS in IoT using Machine Learning and Blockchain
    Alsharif, Nada Abdu
    Mishra, Shailendra
    Alshehri, Mohammed
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11197 - 11203
  • [38] Android Anomaly Detection System Using Machine Learning Classification
    Kurniawan, Harry
    Rosmansyah, Yusep
    Dabarsyah, Budiman
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 288 - 293
  • [39] Anomaly Detection with Machine Learning Models Using API Calls
    Sahin, Varol
    Satilmis, Hami
    Yazar, Bilge Kagan
    Akleylek, Sedat
    INFORMATION TECHNOLOGIES AND THEIR APPLICATIONS, PT II, ITTA 2024, 2025, 2226 : 298 - 309
  • [40] IoT Anomaly Detection Using a Multitude of Machine Learning Algorithms
    Balega, Maria
    Farag, Waleed
    Ezekiel, Soundararajan
    Wu, Xin-Wen
    Deak, Alicia
    Good, Zaryn
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,