Topological entropy of nonautonomous dynamical systems

被引:19
作者
Liu, Kairan [1 ]
Qiao, Yixiao [2 ]
Xu, Leiye [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Entropy; Nonautonomous dynamical system; Induced system; Finite-to-one extension;
D O I
10.1016/j.jde.2019.11.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M (X) be the space of all Borel probability measures on a compact metric space X endowed with the weak*-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system (X, {f(n)}(n=1)(+infinity)) vanishes, then so does that of its induced system (M(X), {f(n)}(n=1)(+infinity)) moreover, once the topological entropy of (X, {f(n)}(n=1)(+infinity)) is positive, that of its induced system (M(X), {f(n)}(n=1)(+infinity)) jumps to infinity. In contrast to Bowen's inequality, we construct a nonautonomous dynamical system whose topological entropy is not preserved under a finite-to-one extension. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5353 / 5365
页数:13
相关论文
共 16 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]   Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems [J].
Bis, Andrzej .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (01) :273-285
[3]   CORRECTION [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) :509-510
[4]  
BRIN M, 1983, LECT NOTES MATH, V1007, P30
[5]  
Canovas J.S., 2004, Grazer Math Ber, V346, P53
[6]   QUASI-FACTORS OF ZERO ENTROPY SYSTEMS [J].
GLASNER, E ;
WEISS, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :665-686
[7]  
Huang X., 2008, Nonlinear Dyn. Syst. Theory, V8, P43
[8]  
Kawan C., 2014, NONAUTON STOCH DYN S, V2013-0003, P26
[9]   Dynamical entropy in Banach spaces [J].
Kerr, D ;
Li, HF .
INVENTIONES MATHEMATICAE, 2005, 162 (03) :649-686
[10]  
Kolyada S, 1999, FUND MATH, V160, P161