Systematic identification of novel cancer genes through analysis of deep shRNA perturbation screens

被引:5
作者
Montazeri, Hesam [1 ,2 ]
Coto-Llerena, Mairene [2 ,3 ]
Bianco, Gaia [2 ,3 ]
Zangene, Ehsan [1 ]
Taha-Mehlitz, Stephanie [3 ]
Paradiso, Viola [2 ]
Srivatsa, Sumana [4 ,5 ]
de Weck, Antoine [6 ]
Roma, Guglielmo [6 ]
Lanzafame, Manuela [2 ]
Bolli, Martin [7 ,8 ]
Beerenwinkel, Niko [4 ,5 ]
von Fluee, Markus [7 ,8 ]
Terracciano, Luigi M. [9 ,10 ]
Piscuoglio, Salvatore [2 ,3 ]
Ng, Charlotte K. Y. [2 ,11 ,12 ]
机构
[1] Univ Tehran, Inst Biochem & Biophys, Dept Bioinformat, Tehran, Iran
[2] Univ Hosp Basel, Inst Med Genet & Pathol, Basel, Switzerland
[3] Univ Basel, Dept Biomed, Visceral Surg & Precis Med Res Lab, Basel, Switzerland
[4] Swiss Fed Inst Technol, Dept Biosyst Sci & Engn, Basel, Switzerland
[5] SIB Swiss Inst Bioinformat, Basel, Switzerland
[6] Novartis Pharma AG, Novartis Inst BioMed Res, Basel, Switzerland
[7] St Clara Hosp, Clarunis, Dept Visceral Surg, Univ Ctr Gastrointestinal & Liver Dis, Basel, Switzerland
[8] Univ Hosp Basel, Basel, Switzerland
[9] IRCCS, Dept Pathol, Humanitas Clin & Res Ctr, Milan, Italy
[10] Humanitas Univ, Dept Biomed Sci, Milan, Italy
[11] Univ Bern, Dept BioMed Res, Bern, Switzerland
[12] SIB Swiss Inst Bioinformat, Lausanne, Switzerland
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
GLIOMA-CELLS; TUMOR-GROWTH; LARGE-SCALE; MUTANT P53; IN-VITRO; MUTATIONS; LANDSCAPE; TARGET; BREAST; LRRC4;
D O I
10.1093/nar/gkab627
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systematic perturbation screens provide comprehensive resources for the elucidation of cancer driver genes. The perturbation of many genes in relatively few cell lines in such functional screens necessitates the development of specialized computational tools with sufficient statistical power. Here we developed APSiC (Analysis of Perturbation Screens for identifying novel Cancer genes) to identify genetic drivers and effectors in perturbation screens even with few samples. Applying APSiC to the shRNA screen Project DRIVE, APSiC identified well-known and novel putative mutational and amplified cancer genes across all cancer types and in specific cancer types. Additionally, APSiC discovered tumor-promoting and tumor-suppressive effectors, respectively, for individual cancer types, including genes involved in cell cycle control, Wnt/beta-catenin and hippo signalling pathways. We functionally demonstrated that LRRC4B, a putative novel tumor-suppressive effector, suppresses proliferation by delaying cell cycle and modulates apoptosis in breast cancer. We demonstrate APSiC is a robust statistical framework for discovery of novel cancer genes through analysis of large-scale perturbation screens. The analysis of DRIVE using APSiC is provided as a web portal and represents a valuable resource for the discovery of novel cancer genes.
引用
收藏
页码:8488 / 8504
页数:17
相关论文
共 83 条
  • [1] Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting
    Aguirre, Andrew J.
    Meyers, Robin M.
    Weir, Barbara A.
    Vazquez, Francisca
    Zhang, Cheng-Zhong
    Ben-David, Uri
    Cook, April
    Ha, Gavin
    Harrington, William F.
    Doshi, Mihir B.
    Kost-Alimova, Maria
    Gill, Stanley
    Xu, Han
    Ali, Levi D.
    Jiang, Guozhi
    Pantel, Sasha
    Lee, Yenarae
    Goodale, Amy
    Cherniack, Andrew D.
    Oh, Coyin
    Kryukov, Gregory
    Cowley, Glenn S.
    Garraway, Levi A.
    Stegmaier, Kimberly
    Roberts, Charles W.
    Golub, Todd R.
    Meyerson, Matthew
    Root, David E.
    Tsherniak, Aviad
    Hahn, William C.
    [J]. CANCER DISCOVERY, 2016, 6 (08) : 914 - 929
  • [2] Experimental validation of the importance of seed complement frequency to siRNA specificity
    Anderson, Emily M.
    Birmingham, Amanda
    Baskerville, Scott
    Reynolds, Angela
    Maksimova, Elena
    Leake, Devin
    Fedorov, Yuriy
    Karpilow, Jon
    Khvorova, Anastasia
    [J]. RNA, 2008, 14 (05) : 853 - 861
  • [3] HMGA1 Expression in Human Hepatocellular Carcinoma Correlates with Poor Prognosis and Promotes Tumor Growth and Migration in in vitro Models1
    Andreozzi, Mariacarla
    Quintavalle, Cristina
    Benz, David
    Quagliata, Luca
    Matter, Matthias
    Calabrese, Diego
    Tosti, Nadia
    Ruiz, Christian
    Trapani, Francesca
    Tornillo, Luigi
    Fusco, Alfredo
    Heim, Markus H.
    Ng, Charlotte K. Y.
    Pallante, Pierlorenzo
    Terracciano, Luigi M.
    Piscuoglio, Salvatore
    [J]. NEOPLASIA, 2016, 18 (12): : 724 - 731
  • [4] OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers (vol 35, pg 5396, 2019)
    Arnedo-Pac, Claudia
    Mularoni, Loris
    Muinos, Ferran
    Gonzalez-Perez, Abel
    Lopez-Bigas, Nuria
    [J]. BIOINFORMATICS, 2019, 35 (24) : 5396 - 5396
  • [5] Comprehensive Characterization of Cancer Driver Genes and Mutations (vol 173, 371.e1, 2018)
    Bailey, Matthew H.
    Tokheim, Collin
    Porta-Pardo, Eduard
    Sengupta, Sohini
    Bertrand, Denis
    Weerasinghe, Amila
    Colaprico, Antonio
    Wendl, Michael C.
    Kim, Jaegil
    Reardon, Brendan
    Ng, Patrick Kwok-Shing
    Jeong, Kang Jin
    Cao, Song
    Wang, Zixing
    Gao, Jianjiong
    Gao, Qingsong
    Wang, Fang
    Liu, Eric Minwei
    Mularoni, Loris
    Rubio-Perez, Carlota
    Nagarajan, Niranjan
    Cortes-Ciriano, Isidro
    Zhou, Daniel Cui
    Liang, Wen-Wei
    Hess, Julian M.
    Yellapantula, Venkata D.
    Tamborero, David
    Gonzalez-Perez, Abel
    Suphavilai, Chayaporn
    Ko, Jia Yu
    Khurana, Ekta
    Park, Peter J.
    Van Allen, Eliezer M.
    Liang, Han
    Lawrence, Michael S.
    Godzik, Adam
    Lopez-Bigas, Nuria
    Stuart, Josh
    Wheeler, David
    Getz, Gad
    Chen, Ken
    Lazar, Alexander J.
    Mills, Gordon B.
    Karchin, Rachel
    Ding, Li
    [J]. CELL, 2018, 174 (04) : 1034 - 1035
  • [6] Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
  • [7] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [8] 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets
    Birmingham, A
    Anderson, EM
    Reynolds, A
    Ilsley-Tyree, D
    Leake, D
    Fedorov, Y
    Baskerville, S
    Maksimova, E
    Robinson, K
    Karpilow, J
    Marshall, WS
    Khvorova, A
    [J]. NATURE METHODS, 2006, 3 (03) : 199 - 204
  • [9] Hippo Pathway in Cancer: Aberrant Regulation and Therapeutic Opportunities
    Calses, Philamer C.
    Crawford, James J.
    Lill, Jennie R.
    Dey, Anwesha
    [J]. TRENDS IN CANCER, 2019, 5 (05): : 297 - 307
  • [10] Chakravarty D, 2017, JCO PRECIS ONCOL, V1