Online tracking of the contents of conscious perception using real-time fMRI

被引:21
|
作者
Reichert, Christoph [1 ,2 ,3 ]
Fendrich, Robert [1 ,4 ]
Bernarding, Johannes [5 ]
Tempelmann, Claus [1 ]
Hinrichs, Hermann [1 ,3 ,6 ,7 ,8 ]
Rieger, Jochem W. [9 ,10 ]
机构
[1] Univ Med Ctr AoR, Dept Neurol, Magdeburg, Germany
[2] Otto Von Guericke Univ, Dept Knowledge & Language Proc, Magdeburg, Germany
[3] Forschungscampus STIMULATE, Magdeburg, Germany
[4] Dartmouth Coll, Dept Psychol & Brain Sci, Hanover, NH 03755 USA
[5] Otto Von Guericke Univ, Fac Med, Inst Biometry & Med Informat, Magdeburg, Germany
[6] Leibniz Inst Neurobiol, Dept Behav Neurol, Magdeburg, Germany
[7] German Ctr Neurodegenerat Dis DZNE, Magdeburg, Germany
[8] Ctr Behav Brain Sci, Magdeburg, Germany
[9] Carl von Ossietzky Univ Oldenburg, Dept Appl Neurocognit Psychol, D-26111 Oldenburg, Germany
[10] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosensory Sci, D-26111 Oldenburg, Germany
来源
FRONTIERS IN NEUROSCIENCE | 2014年 / 8卷
关键词
anorthoscopic; bistable perception; ambiguous stimulus; real-time fMRI; object integration; slit viewing; HUMAN BRAIN ACTIVITY; HUMAN AUDITORY-CORTEX; HUMAN VISUAL-CORTEX; EXTRASTRIATE CORTEX; BINOCULAR-RIVALRY; SHAPE PERCEPTION; CORTICAL REGIONS; TEMPORAL CORTEX; PATTERNS; RECOGNITION;
D O I
10.3389/fnins.2014.00116
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Perception is an active process that interprets and structures the stimulus input based on assumptions about its possible causes. We use real-time functional magnetic resonance imaging (rtfMRI) to investigate a particularly powerful demonstration of dynamic object integration in which the same physical stimulus intermittently elicits categorically different conscious object percepts. In this study, we simulated an outline object that is moving behind a narrow slit. With such displays, the physically identical stimulus can elicit categorically different percepts that either correspond closely to the physical stimulus (vertically moving line segments) or represent a hypothesis about the underlying cause of the physical stimulus (a horizontally moving object that is partly occluded). In the latter case, the brain must construct an object from the input sequence. Combining rtfMRI with machine learning techniques we show that it is possible to determine online the momentary state of a subject's conscious percept from time resolved BOLD-activity. In addition, we found that feedback about the currently decoded percept increased the decoding rates compared to prior fMRI recordings of the same stimulus without feedback presentation. The analysis of the trained classifier revealed a brain network that discriminates contents of conscious perception with antagonistic interactions between early sensory areas that represent physical stimulus properties and higher-tier brain areas. During integrated object percepts, brain activity decreases in early sensory areas and increases in higher-tier areas. We conclude that it is possible to use BOLD responses to reliably track the contents of conscious visual perception with a relatively high temporal resolution. We suggest that our approach can also be used to investigate the neural basis of auditory object formation and discuss the results in the context of predictive coding theory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Online decoding of object-based attention using real-time fMRI
    Niazi, Adnan M.
    van den Broek, Philip L. C.
    Klanke, Stefan
    Barth, Markus
    Poel, Mannes
    Desain, Peter
    van Gerven, Marcel A. J.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2014, 39 (02) : 319 - 329
  • [2] Real-Time fMRI
    Scharnowski, F.
    Mathiak, K.
    Weiskopf, N.
    KLINISCHE NEUROPHYSIOLOGIE, 2009, 40 (04) : 214 - 221
  • [3] Real-time fMRI using brain-state classification
    LaConte, Stephen M.
    Peltier, Scott J.
    Hu, Xiaoping P.
    HUMAN BRAIN MAPPING, 2007, 28 (10) : 1033 - 1044
  • [4] Real-Time Compressive Tracking
    Zhang, Kaihua
    Zhang, Lei
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7574 : 864 - 877
  • [5] Regulation of anterior insular cortex activity using real-time fMRI
    Caria, Andrea
    Veit, Ralf
    Sitaram, Ranganatha
    Lotze, Martin
    Weiskopf, Nikolaus
    Grodd, Wolfgang
    Birbaumer, Niels
    NEUROIMAGE, 2007, 35 (03) : 1238 - 1246
  • [6] Real-time Independent Component Analysis of fMRI using Spatial Constraint
    Wang, Zhi
    Zhang, Hang
    Wu, Xia
    Yao, Li
    Long, Zhiying
    MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672
  • [7] Real-Time fMRI: Perspectives for Clinical Use
    Habel, Ute
    Mathiak, Klaus
    VERHALTENSTHERAPIE, 2009, 19 (02) : 94 - 102
  • [8] Real-time fMRI neurofeedback: Progress and challenges
    Sulzer, J.
    Haller, S.
    Scharnowski, F.
    Weiskopf, N.
    Birbaumer, N.
    Blefari, M. L.
    Bruehl, A. B.
    Cohen, L. G.
    deCharms, R. C.
    Gassert, R.
    Goebel, R.
    Herwig, U.
    LaConte, S.
    Linden, D.
    Luft, A.
    Seifritz, E.
    Sitaram, R.
    NEUROIMAGE, 2013, 76 (01) : 386 - 399
  • [9] Using Real-Time fMRI Based Neurofeedback to Probe Default Network Regulation
    Craddock, Richard Cameron
    BIOLOGICAL PSYCHIATRY, 2014, 75 (09) : 145S - 145S
  • [10] Real-Time fMRI: A Tool for Local Brain Regulation
    Caria, Andrea
    Sitaram, Ranganatha
    Birbaumer, Niels
    NEUROSCIENTIST, 2012, 18 (05) : 487 - 501