Excellent room-temperature performance of lithium metal polymer battery with enhanced interfacial compatibility

被引:7
作者
Fu, Chuankai [1 ]
Lou, Shuaifeng [1 ]
Cao, Yi [1 ]
Ma, Yulin [1 ]
Du, Chunyu [1 ]
Zuo, Pengjian [1 ]
Cheng, Xinqun [1 ]
Tang, Weiping [2 ]
Wu, Yongmin [2 ]
Gao, Yunzhi [1 ]
Huo, Hua [1 ]
Yin, Geping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[2] Shanghai Inst Space Power Sources, State Key Lab Space Power Sources Technol, Shanghai 200245, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal polymer battery; Interfacial compatibility; Composite solid-state electrolyte; Room temperature; SOLID POLYMER; COMPOSITE ELECTROLYTE; IONIC-CONDUCTIVITY; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; ANODE; CHALLENGES; STABILITY; LIQUID; ZNO;
D O I
10.1016/j.electacta.2018.07.040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Recently, rechargeable lithium metal polymer battery (LMPB) attracts increasing attention because of its high safety and energy density properties. However, the high contact interfacial resistance of solid-state electrode and electrolyte is still an obstacle to satisfy the demand of high current density and long cycle stability, especially at room and lower temperature. Here, we develop a simple and efficient heat treatment method, to improve the interfacial compatibility between electrode and electrolyte in all-solid-state LMPB, successfully realizing workable LMPB at a reduced temperature (30 degrees C). The LMPB shows excellent cycling performance and rate capability in the voltage range of 2.5-4.2 V. The behavior of Li+ plating/stripping on the surface of lithium metal anode is greatly enhanced. Meanwhile, the interfacial resistance of the LMPB decrease significantly after the heat treatment process. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1261 / 1268
页数:8
相关论文
共 54 条
[1]  
Bae J., 2018, ANGEW CHEM, V57, P1, DOI [10.1002/anie.201710841/, DOI 10.1002/ANIE.201710841/]
[2]   Enhanced electrochemical performance of Li4Ti5O12 through in-situ coating 70Li2S-30P2S5 solid electrolyte for all-solid-state lithium batteries [J].
Cao, Yi ;
Li, Qin ;
Lou, Shuaifeng ;
Ma, Yulin ;
Du, Chunyu ;
Gao, Yunzhi ;
Yin, Geping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 752 :8-13
[3]   All-solid-state lithium battery with high capacity enabled by a new way of composite cathode design [J].
Chen, Ru-Jun ;
Zhang, Yi-Bo ;
Liu, Ting ;
Xu, Bingqing ;
Shen, Yang ;
Li, Liangliang ;
Lin, Yuan-Hua ;
Nan, Ce-Wen .
SOLID STATE IONICS, 2017, 310 :44-49
[4]   Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte [J].
Cheng, Samson Ho-Sum ;
He, Kang-Qiang ;
Liu, Ying ;
Zha, Jun-Wei ;
Kamruzzaman, Md ;
Ma, Robin Lok-Wang ;
Dang, Zhi-Min ;
Li, Robert K. Y. ;
Chung, C. Y. .
ELECTROCHIMICA ACTA, 2017, 253 :430-438
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix [J].
Choi, Jeong-Hee ;
Lee, Chul-Ho ;
Yu, Ji-Hyun ;
Doh, Chil-Hoon ;
Lee, Sang-Min .
JOURNAL OF POWER SOURCES, 2015, 274 :458-463
[7]   Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4 electrolytes [J].
Fan, LZ ;
Dang, ZM ;
Wei, GD ;
Nan, CW ;
Li, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 99 (1-3) :340-343
[8]   Effect of modified SiO2 on the properties of PEO-based polymer electrolytes [J].
Fan, LZ ;
Nan, CW ;
Zhao, SJ .
SOLID STATE IONICS, 2003, 164 (1-2) :81-86
[9]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[10]   Ionic conductivity in crystalline polymer electrolytes [J].
Gadjourova, Z ;
Andreev, YG ;
Tunstall, DP ;
Bruce, PG .
NATURE, 2001, 412 (6846) :520-523