Dielectric Elastomer Generators: How Much Energy Can Be Converted?

被引:304
作者
Koh, Soo Jin Adrian [1 ,2 ]
Keplinger, Christoph [1 ,3 ]
Li, Tiefeng [4 ]
Bauer, Siegfried [3 ]
Suo, Zhigang [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Inst High Performance Comp, Singapore 138632, Singapore
[3] Johannes Kepler Univ Linz, Soft Matter Phys Dept, A-4040 Linz, Austria
[4] Zhejiang Univ, Inst Appl Mech, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Dielectric materials; energy conversion; generators; modeling; ELECTRICALLY ACTUATED ELASTOMERS; MODEL;
D O I
10.1109/TMECH.2010.2089635
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dielectric elastomers are being developed as generators to harvest energy from renewable sources, such as human movements and ocean waves. We model a generator as a system of two degrees of freedom, represented on either the stress-stretch plane or the voltage-charge plane. A point in such a plane represents a state of the generator, a curve represents a path of operation, a contour represents a cycle of operation, and the area enclosed by the contour represents the energy of conversion per cycle. Each mechanism of failure is represented by a curve in the plane. The curves of all the known mechanics of failure enclose the region of allowable states. The area of this region defines the maximum energy of conversion. This study includes the following mechanisms of failure: material rupture, loss of tension, electrical breakdown, and electromechanical instability. It is found that natural rubber outperforms VHB elastomer as a generator at strains less than 15%. Furthermore, by varying material parameters, energy of conversion can be increased above 1.0 J/g.
引用
收藏
页码:33 / 41
页数:9
相关论文
共 39 条
[1]   MECHANICAL-STRESS IN A DIELECTRIC SOLID FROM A UNIFORM ELECTRIC-FIELD [J].
ANDERSON, RA .
PHYSICAL REVIEW B, 1986, 33 (02) :1302-1307
[2]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[3]   Advances in Dielectric Elastomers for Actuators and Artificial Muscles [J].
Brochu, Paul ;
Pei, Qibing .
MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (01) :10-36
[4]   Innovative power generators for energy harvesting using electroactive polymer artificial muscles [J].
Chiba, Seiki ;
Waki, Mikio ;
Kornbluh, Roy ;
Pelnine, Ron .
ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2008, 2008, 6927
[5]  
DISSADO LA, 1992, ELECT DEGRADATION BR, P424
[6]   Electrically actuated elastomers for electro-optical modulators [J].
Galler, N. ;
Ditlbacher, H. ;
Steinberger, B. ;
Hohenau, A. ;
Dansachmueller, M. ;
Camacho-Gonzales, F. ;
Bauer, S. ;
Krenn, J. R. ;
Leitner, A. ;
Aussenegg, F. R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (01) :7-10
[7]  
Iskandarani Y. H., 2009, P SOC PHOTO-OPT INS, V7287, DOI 10.1117/12.815267
[8]   Dielectric polymer: scavenging energy from human motion [J].
Jean-Mistral, Claire ;
Basrour, Skandar ;
Chaillout, Jean-Jacques .
ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2008, 2008, 6927
[9]   Rontgen's electrode-free elastomer actuators without electromechanical pull-in instability [J].
Keplinger, Christoph ;
Kaltenbrunner, Martin ;
Arnold, Nikita ;
Bauer, Siegfried .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4505-4510
[10]   Capacitive extensometry for transient strain analysis of dielectric elastomer actuators [J].
Keplinger, Christoph ;
Kaltenbrunner, Martin ;
Arnold, Nikita ;
Bauer, Siegfried .
APPLIED PHYSICS LETTERS, 2008, 92 (19)