Impact of Foreshock Transients on the Flank Magnetopause and Magnetosphere and the Ionosphere

被引:12
|
作者
Wang, Chih-Ping [1 ]
Wang, Xueyi [2 ]
Liu, Terry Z. [3 ]
Lin, Yu [2 ]
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
[2] Auburn Univ, Phys Dept, Auburn, AL 36849 USA
[3] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2021年 / 8卷
关键词
foreshock transients; magnetosheath perturbations; flank magnetopause distortion; compressional waves; field-aligned currents; HOT FLOW ANOMALIES; BOW SHOCK; THEMIS SATELLITE; CAVITIES; MAGNETOSHEATH; UPSTREAM; BUBBLES; DRIVEN; SHAPE;
D O I
10.3389/fspas.2021.751244
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Mesoscale (on the scales of a few minutes and a few R-E) magnetosheath and magnetopause perturbations driven by foreshock transients have been observed in the flank magnetotail. In this paper, we present the 3D global hybrid simulation results to show qualitatively the 3D structure of the flank magnetopause distortion caused by foreshock transients and its impacts on the tail magnetosphere and the ionosphere. Foreshock transient perturbations consist of a low-density core and high-density edge(s), thus, after they propagate into the magnetosheath, they result in magnetosheath pressure perturbations that distort magnetopause. The magnetopause is distorted locally outward (inward) in response to the dip (peak) of the magnetosheath pressure perturbations. As the magnetosheath perturbations propagate tailward, they continue to distort the flank magnetopause. This qualitative explains the transient appearance of the magnetosphere observed in the flank magnetosheath associated with foreshock transients. The 3D structure of the magnetosheath perturbations and the shape of the distorted magnetopause keep evolving as they propagate tailward. The transient distortion of the magnetopause generates compressional magnetic field perturbations within the magnetosphere. The magnetopause distortion also alters currents around the magnetopause, generating field-aligned currents (FACs) flowing in and out of the ionosphere. As the magnetopause distortion propagates tailward, it results in localized enhancements of FACs in the ionosphere that propagate anti-sunward. This qualitatively explains the observed anti-sunward propagation of the ground magnetic field perturbations associated with foreshock transients.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The penetration of ions into the magnetosphere through the magnetopause turbulent current sheet
    Taktakishvili, A
    Greco, A
    Zimbardo, G
    Veltri, P
    Cimino, G
    Zelenyi, L
    Lopez, RE
    ANNALES GEOPHYSICAE, 2003, 21 (09) : 1965 - 1973
  • [32] Pressure-pulse interaction with the magnetosphere and ionosphere
    Sibeck, DG
    Trivedi, NB
    Zesta, E
    Decker, RB
    Singer, HJ
    Szabo, A
    Tachihara, H
    Watermann, J
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A2)
  • [33] Alfven: magnetosphere-ionosphere connection explorers
    Berthomier, M.
    Fazakerley, A. N.
    Forsyth, C.
    Pottelette, R.
    Alexandrova, O.
    Anastasiadis, A.
    Aruliah, A.
    Blelly, P. -L.
    Briand, C.
    Bruno, R.
    Canu, P.
    Cecconi, B.
    Chust, T.
    Daglis, I.
    Davies, J.
    Dunlop, M.
    Fontaine, D.
    Genot, V.
    Gustavsson, B.
    Haerendel, G.
    Hamrin, M.
    Hapgood, M.
    Hess, S.
    Kataria, D.
    Kauristie, K.
    Kemble, S.
    Khotyaintsev, Y.
    Koskinen, H.
    Lamy, L.
    Lanchester, B.
    Louarn, P.
    Lucek, E.
    Lundin, R.
    Maksimovic, M.
    Manninen, J.
    Marchaudon, A.
    Marghitu, O.
    Marklund, G.
    Milan, S.
    Moen, J.
    Mottez, F.
    Nilsson, H.
    Ostgaard, N.
    Owen, C. J.
    Parrot, M.
    Pedersen, A.
    Perry, C.
    Pincon, J. -L.
    Pitout, F.
    Pulkkinen, T.
    EXPERIMENTAL ASTRONOMY, 2012, 33 (2-3) : 445 - 489
  • [34] Evidence of Electron Acceleration via Nonlinear Resonant Interactions with Whistler-mode Waves at Foreshock Transients
    Shi, Xiaofei
    Artemyev, Anton
    Angelopoulos, Vassilis
    Liu, Terry
    Zhang, Xiao-Jia
    ASTROPHYSICAL JOURNAL, 2023, 952 (01)
  • [35] Kelvin-Helmholtz instability on the magnetopause, magnetohydrodynamic waveguide in the outer magnetosphere, and Alfv,n resonance deep in the magnetosphere
    Mazur, V. A.
    Chuiko, D. A.
    PLASMA PHYSICS REPORTS, 2013, 39 (06) : 488 - 503
  • [36] Positive and negative feedbacks in the magnetosphere-ionosphere coupling
    Mishin, V. M.
    Mishin, V. V.
    Kurikalova, M. A.
    Sapronova, L. A.
    Karavaev, Yu. A.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2019, 187 : 10 - 21
  • [37] A parametric study of magnetosphere-ionosphere coupling in the paleomagnetosphere
    School of Engineering and Science, International University Bremen, Campus Ring 1, D-28759 Bremen, Germany
    不详
    不详
    Adv. Space Res., 2006, 8 (1707-1712): : 1707 - 1712
  • [38] Dayside magnetopause transients correlated with changes of the magnetosheath magnetic field orientation
    Tkachenko, O.
    Safrankova, J.
    Nemecek, Z.
    Sibeck, D. G.
    ANNALES GEOPHYSICAE, 2011, 29 (04) : 687 - 699
  • [39] Model of Magnetosphere-Ionosphere Interactions in the Field of Auroral Electrojets
    Sedykh, P. A.
    GEOMAGNETISM AND AERONOMY, 2011, 51 (07) : 912 - 922
  • [40] Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients
    Wang, Boyi
    Liu, Terry
    Nishimura, Yukitoshi
    Zhang, Hui
    Hartinger, Michael
    Shi, Xueling
    Ma, Qianli
    Angelopoulos, Vassilis
    Frey, Harald U.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (12)