Zassenhaus Lie idempotents, q-bracketing and a new exponential/logarithm correspondence

被引:4
作者
Duchamp, G
Krob, D
Vassilieva, EA
机构
[1] Univ Rouen, LIFAR, F-76230 Mt St Aignan, France
[2] Univ Paris 07, LIAFA, F-75251 Paris 05, France
[3] Moscow State Univ, Dept Mech & Math, Moscow 117889, Russia
关键词
Fer-Zassenhauss formula; Lie idempotents; noncommutative symmetric functions; logarithm; exponential;
D O I
10.1023/A:1011263924121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new q-exponential/logarithm correspondance that allows us to solve a conjecture relating Zasscnhauss Lie idempotents with other Lie idempotents related to the q-bracketing operator.
引用
收藏
页码:251 / 277
页数:27
相关论文
共 15 条
[1]  
DIPPER R, 1991, P LOND MATH SOC, V63, P161
[2]  
Duchamp G., 1997, Discrete Mathematics and Theoretical Computer Science, V1, P159
[3]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[4]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[5]   Noncommutative symmetric functions IV: Quantum linear groups and hecke algebras at q = 0 [J].
Krob, D ;
Thibon, JY .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (04) :339-376
[6]   Noncommutative symmetric functions .2. Transformations of alphabets [J].
Krob, D ;
Leclerc, B ;
Thibon, JY .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1997, 7 (02) :181-264
[7]  
KROB D, IN PRESS INT J ALG C
[8]  
KROB D, 1997, P FORM POW SER ALG C, V2, P326
[9]  
Macdonald I. G., 1994, Symmetric Functions and Hall Polynomials, V2nd
[10]  
MOLEV AI, 1994, NONCOMMUTATIVE SYMME