On the Extended Class of SUPM and Their Generating URSM Over Non-Archimedean Field

被引:3
作者
Banerjee, Abhijit [1 ]
Maity, Sayantan [1 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
关键词
non-Archimedean; meromorphic function; strong uniqueness polynomial; unique range set; ADIC MEROMORPHIC FUNCTIONS; UNIQUENESS POLYNOMIALS; RANGE SETS; BI-URS;
D O I
10.1134/S2070046621030018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate an extended class of strong uniqueness polynomial over non-Archimedean field than that was recently studied by Khoai-An [p-Adic Numb. Ultrametr. Anal. Appl. 12 (4), 276-284 (2020)]. We also find the unique range set of weight 2 corresponding to the SUPM which improve and generalize significantly the results of the paper of Khoai-An [p-Adic Numb. Ultrametr. Anal. Appl. 12 (4), 276-284 (2020)] and an earlier one due to Hu-Yang [Acta Math. Viet. 24 (1), 95-108 (1999)].
引用
收藏
页码:175 / 185
页数:11
相关论文
共 25 条
[1]  
An V.H., 2012, UKRANIAN MATH J, V64, P147, DOI DOI 10.1007/S11253-012-0636-Y
[2]  
Banerjee A., 2013, NIHONKAI MATH J, V24, P121
[3]  
Banerjee A, 2010, TAMKANG J MATH, V41, P379
[4]   A NEW CLASS OF STRONG UNIQUENESS POLYNOMIALS SATISFYING FUJIMOTO'S CONDITION [J].
Banerjee, Abhijit .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) :465-474
[5]   A Uniqueness Polynomial Generating a Unique Range Set and Vice Versa [J].
Banerjee, Abhijit ;
Lahiri, Indrajit .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (02) :527-539
[6]   p-Adic meromorphic functions f′ P′(f), g′ P′(g) sharing a small function [J].
Boussaf, Kamal ;
Escassut, Alain ;
Ojeda, Jacqueline .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (02) :172-200
[7]   Urs and ursims for p-adic meromorphic functions inside a disc [J].
Boutabaa, A ;
Escassut, A .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 :485-504
[8]   On uniqueness of p-adic meromorphic functions [J].
Boutabaa, A ;
Escassut, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2557-2568
[9]   The functional equation P(f) = Q(g) in a p-adic field [J].
Escassut, A ;
Yang, CC .
JOURNAL OF NUMBER THEORY, 2004, 105 (02) :344-360
[10]   Urs, ursim, and non-urs for p-adic functions and polynomials [J].
Escassut, A ;
Haddad, L ;
Vidal, R .
JOURNAL OF NUMBER THEORY, 1999, 75 (01) :133-144