A Nonconjugated Zwitterionic Polymer: Cathode Interfacial Layer Comparable with PFN for Narrow-Bandgap Polymer Solar Cells

被引:13
作者
Li, Zhendong [1 ]
Chen, Qiaoyun [1 ]
Liu, Yanfeng [1 ]
Ding, Lan [1 ]
Zhang, Kaicheng [1 ]
Zhu, Kai [1 ]
Yuan, Ligang [1 ]
Dong, Bin [1 ]
Zhou, Yi [1 ]
Song, Bo [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
cathode interlayers; nonconjugated zwitterionic polymers; polymer solar cells; ELECTRON-TRANSPORT LAYER; HIGH-PERFORMANCE; PHOTOVOLTAIC CELLS; HIGH-EFFICIENCY; WORK FUNCTION; EXCEEDING; 10-PERCENT; BUFFER LAYER; MOLECULE; INTERLAYER; ENABLES;
D O I
10.1002/marc.201700828
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A nonconjugated, alcohol-soluble zwitterionic polymer, poly(sulfobetaine methacrylate) (denoted by PSBMA), is employed as cathode interfacial layer (CIL) in polymer solar cells (PSCs) based on PTB7-Th:PC71BM. Compared with the control device without CIL, PSCs with PSBMA CILs show significant enhancement on the resulting performance, and the highest power conversion efficiency (PCE) of 8.27% is achieved. Under parallel conditions, PSCs with PSBMA as CIL show comparable performance than those with widely used poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-ioctylfluorene)] as CIL. The polar groups of PSBMA not only provide a solvent orthogonal solubility in the process of preparation of the devices but also lead to interfacial dipole to the electrode, which promises a better energy level alignment. In addition, PSBMA-based devices show better abilities of hole blocking. These results indicate that the zwitterionic polymer PSBMA should be a promising CIL in PSC-based narrow-bandgap polymers.
引用
收藏
页数:7
相关论文
共 68 条
[1]   Highly efficient polymer solar cells using a non-conjugated small-molecule zwitterion with enhancement of electron transfer and collection [J].
Ai, Ling ;
Ouyang, Xinhua ;
Liu, Zhiyang ;
Peng, Ruixiang ;
Jiang, Weigang ;
Li, Wang ;
Zhang, Lei ;
Hong, Ling ;
Lei, Tao ;
Guan, Qian ;
Ge, Ziyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (39) :14944-14948
[2]   Enhanced charge collection in confined bulk heterojunction organic solar cells [J].
Allen, Jonathan E. ;
Yager, Kevin G. ;
Hlaing, Htay ;
Nam, Chang-Yong ;
Ocko, Benjamin M. ;
Black, Charles T. .
APPLIED PHYSICS LETTERS, 2011, 99 (16)
[3]   Highly efficient organic tandem solar cells: a follow up review [J].
Ameri, Tayebeh ;
Li, Ning ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2390-2413
[4]  
[Anonymous], [No title captured]
[5]   Design Considerations for Electrode Buffer Layer Materials in Polymer Solar Cells [J].
Bilby, David ;
Frieberg, Bradley ;
Kramadhati, Shobhita ;
Green, Peter ;
Kim, Jinsang .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (17) :14964-14974
[6]   Effect of LiF/metal electrodes on the performance of plastic solar cells [J].
Brabec, CJ ;
Shaheen, SE ;
Winder, C ;
Sariciftci, NS ;
Denk, P .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1288-1290
[7]   Facilitating Electron Transportation in Perovskite Solar Cells via Water-Soluble Fullerenol Interlayers [J].
Cao, Tiantian ;
Wang, Zhaowei ;
Xia, Yijun ;
Song, Bo ;
Zhou, Yi ;
Chen, Ning ;
Li, Yongfang .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) :18284-18291
[8]   Cesium carbonate as a functional interlayer for polymer photovoltaic devices [J].
Chen, Fang-Chung ;
Wu, Jyh-Lih ;
Yang, Sidney S. ;
Hsieh, Kuo-Huang ;
Chen, Wen-Chang .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (10)
[9]   Single-Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency [J].
Chen, Jing-De ;
Cui, Chaohua ;
Li, Yan-Qing ;
Zhou, Lei ;
Ou, Qing-Dong ;
Li, Chi ;
Li, Yongfang ;
Tang, Jian-Xin .
ADVANCED MATERIALS, 2015, 27 (06) :1035-1041
[10]   Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Modification Material [J].
Duan, Chunhui ;
Zhong, Chengmei ;
Liu, Chunchen ;
Huang, Fei ;
Cao, Yong .
CHEMISTRY OF MATERIALS, 2012, 24 (09) :1682-1689