Hamiltonization of Solids of Revolution Through Reduction

被引:11
作者
Balseiro, Paula [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Rua Prof Marcos Waldemar de Freitas Reis,S-N, BR-24020140 Niteroi, RJ, Brazil
关键词
Geometric mechanics; Nonholonomic systems; Hamiltonization; (almost) Poisson brackets; Reduction by symmetries; NONHOLONOMIC MECHANICAL SYSTEMS; CONSERVATION-LAWS; POISSON STRUCTURES; NOETHER THEOREM; DYNAMICS; SYMMETRY; GEOMETRY; HIERARCHY; BRACKETS;
D O I
10.1007/s00332-017-9394-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the relation between conserved quantities of nonholonomic systems and the hamiltonization problem employing the geometric methods of Balseiro (Arch Ration Mech Anal 214:453-501, 2014) and Balseiro and Garcia-Naranjo (Arch Ration Mech Anal 205(1):267-310, 2012). We illustrate the theory with classical examples describing the dynamics of solids of revolution rolling without sliding on a plane. In these cases, using the existence of two conserved quantities we obtain, by means of gauge transformations and symmetry reduction, genuine Poisson brackets describing the reduced dynamics.
引用
收藏
页码:2001 / 2035
页数:35
相关论文
共 48 条
[1]  
Balseiro P., 2017, IN PRESS
[2]   A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries [J].
Balseiro, Paula ;
Sansonetto, Nicola .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[3]   Reduction of nonholonomic systems in two stages and Hamiltonization [J].
Balseiro, Paula ;
Fernandez, Oscar E. .
NONLINEARITY, 2015, 28 (08) :2873-2912
[4]   The Jacobiator of Nonholonomic Systems and the Geometry of Reduced Nonholonomic Brackets [J].
Balseiro, Paula .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (02) :453-501
[5]   Gauge Transformations, Twisted Poisson Brackets and Hamiltonization of Nonholonomic Systems [J].
Balseiro, Paula ;
Garcia-Naranjo, Luis C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (01) :267-310
[6]  
Bates L., 1996, Reports on Mathematical Physics, V37, P295, DOI 10.1016/0034-4877(96)84069-9
[7]  
Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
[8]  
Bates L., 2015, GLOBAL ASPECTS CLASS
[9]   NOT-QUITE-HAMILTONIAN REDUCTION [J].
Bates, Larry M. ;
Sniatycki, Jedrzej .
REPORTS ON MATHEMATICAL PHYSICS, 2015, 76 (01) :41-52
[10]   On the Routh sphere problem [J].
Bizyaev, I. A. ;
Tsiganov, A. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (08)