Exact sequences of inner automorphisms of tensors

被引:1
作者
Brooksbank, Peter A. [1 ]
Maglione, Joshua [2 ]
Wilson, James B. [3 ]
机构
[1] Bucknell Univ, Dept Math, Lewisburg, PA 17837 USA
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
Tensor; Derivation; Autotopism; DERIVATIONS;
D O I
10.1016/j.jalgebra.2019.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce a long exact sequence whose terms are unit groups of associative algebras that behave as inner automorphisms of a given tensor. Our sequence generalizes known sequences for associative and non-associative algebras. In a manner similar to those, our sequence facilitates inductive reasoning about, and calculation of the groups of symmetries of a tensor. The new insights these methods afford can be applied to problems ranging from understanding algebraic structures to distinguishing entangled states in particle physics. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 63
页数:21
相关论文
共 9 条
  • [1] Picard groups and infinite matrix rings
    Abrams, G
    Haefner, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) : 2737 - 2752
  • [2] On the Rosenberg-Zelinsky sequence in abelian monoidal categories
    Barmeier, Till
    Fuchs, Juergen
    Runkel, Ingo
    Schweigert, Christoph
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 642 : 1 - 36
  • [3] DERIVATIONS AND AUTOMORPHISMS OF NONASSOCIATIVE MATRIX ALGEBRAS
    BENKART, GM
    OSBORN, JM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 263 (02) : 411 - 430
  • [4] Three qubits can be entangled in two inequivalent ways
    Dur, W.
    Vidal, G.
    Cirac, J.I.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06): : 062314 - 062311
  • [5] First Uriya, CORRES TENSORS UNPUB
  • [6] ON INVERTIBLE BIMODULES AND AUTOMORPHISMS OF NONCOMMUTATIVE RINGS
    GURALNICK, RM
    MONTGOMERY, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) : 917 - 937
  • [7] Generalized derivations of Lie algebras
    Leger, GF
    Luks, EM
    [J]. JOURNAL OF ALGEBRA, 2000, 228 (01) : 165 - 203
  • [8] Rosenberg A., 1961, Pacific J. Math., V11, P1109
  • [9] On automorphisms of groups, rings, and algebras
    Wilson, James B.
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (04) : 1452 - 1478