On a Hamilton-Poisson Approach of the Maxwell-Bloch Equations with a Control

被引:14
作者
Lazureanu, Cristian [1 ]
机构
[1] Politehn Univ Timisoara, Dept Math, PiataVictorei, 2, Timisoara 300006, Romania
关键词
Maxwell-Bloch equations; Hamiltonian dynamics; Stability; Energy Casimir mapping; Periodic orbits; ROTATING WAVE APPROXIMATION; SYSTEM; INTEGRABILITY; STABILITY; VERSION; ORBITS;
D O I
10.1007/s11040-017-9251-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the 3D real-valued Maxwell-Bloch equations with a parametric control given by. x = y + az + byz, y = xz, z = -xy ( a, b is an element of R). We give two Lie-Poisson structures of this system that are related with well-known Lie algebras. Moreover, we construct infinitely many Hamilton-Poisson realizations of this system. We also analyze the stability of the equilibrium points, as well as the existence of periodic orbits. In addition, we emphasize some connections between the energy-Casimir mapping of the considered system and the above-mentioned dynamical elements.
引用
收藏
页数:22
相关论文
共 29 条
[1]  
Adams RM, 2012, EUR J PURE APPL MATH, V5, P1
[2]  
Alekseev K. N., 1987, Soviet Physics - JETP, V65, P1115
[3]  
Arnold V, 1965, DOKL AKAD NAUK+, V162, P773
[4]  
Barrett DI, 2014, 2014 EUROPEAN CONTROL CONFERENCE (ECC), P2466, DOI 10.1109/ECC.2014.6862313
[5]   On some dynamical and geometrical properties of the Maxwell-Bloch equations with a quadratic control [J].
Binzar, T. ;
Lazureanu, C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 :1-8
[6]   A RIKITAKE TYPE SYSTEM WITH ONE CONTROL [J].
Binzar, Tudor ;
Lazureanu, Cristian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (07) :1755-1776
[7]   Periodic orbits in the case of a zero eigenvalue [J].
Birtea, Petre ;
Puta, Mircea ;
Tudoran, Razvan Micu .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (12) :779-784
[8]   The stability problem and special solutions for the 5-components Maxwell-Bloch equations [J].
Birtea, Petre ;
Casu, Ioan .
APPLIED MATHEMATICS LETTERS, 2013, 26 (08) :875-880
[9]   Compatible Poisson brackets on Lie algebras [J].
Bolsinov, AV ;
Borisov, AV .
MATHEMATICAL NOTES, 2002, 72 (1-2) :10-30
[10]   Stability and Integrability Aspects for the Maxwell - Bloch Equations with the Rotating Wave Approximation [J].
Casu, Ioan ;
Lazureanu, Cristian .
REGULAR & CHAOTIC DYNAMICS, 2017, 22 (02) :109-121