Living cover crops have immediate impacts on soil microbial community structure and function

被引:137
作者
Finney, D. M. [1 ]
Buyer, J. S. [2 ]
Kaye, J. P. [3 ]
机构
[1] Ursinus Coll, Biol Dept, Collegeville, PA 19426 USA
[2] USDA ARS, Sustainable Agr Syst Lab, Beltsville, MD USA
[3] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA
基金
美国食品与农业研究所;
关键词
cover crops; phospholipid fatty acid analysis; soil biological activity; soil health; soil microbial communities; ORGANIC-MATTER DYNAMICS; DIVERSITY; BACTERIAL; CARBON; MANAGEMENT; COMPOST; BIOMASS; YIELD; MICROORGANISMS; DETERMINANTS;
D O I
10.2489/jswc.72.4.361
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Cover cropping is a widely promoted strategy to enhance soil health in agricultural systems. Despite a substantial body of literature demonstrating links between cover crops and soil biology, an important component of soil health, research evaluating how specific cover crop species influence soil microbial communities remains limited. This study examined the effects of eight fall-sown cover crop species grown singly and in multispecies mixtures on microbial community structure and soil biological activity using phospholipid fatty acid (PLFA) profiles and daily respiration rates, respectively. Fourteen cover crop treatments and a no cover crop control were established in August of 2011 and 2012 on adjacent fields in central Pennsylvania following spring oats (Avena saliva L.). Soil communities were sampled from bulk soil collected to a depth of 20 cm (7.9 in) in fall and spring, approximately two and nine months after cover crop planting and prior to cover crop termination. In both fall and spring, cover crops led to an increase in total PLFA concentration relative to the arable weed community present in control plots (increases of 5.37 nmol g(-1) and 10.20 nmol g(-1) respectively). While there was a positive correlation between aboveground plant biomass (whether from arable weeds or cover crops) and total PLFA concentration, we also found that individual cover crop species favored particular microbial functional groups. Arbuscular mycorrhizal (AM) fungi were more abundant beneath oat and cereal rye (Secale cereale L.) cover crops. Non-AM fungi were positively associated with hairy vetch (Vicia villosa L.). These cover crop-microbial group associations were present not only in monocultures, but also multispecies cover crop mixtures. Arable weed communities were associated with higher proportions of actinomycetes and Gram-positive bacteria. Soil biological activity varied by treatment and was positively correlated with both the size and composition (fungal:bacterial ratio) of the microbial community. This research establishes a clear link between cover crops, microbial communities, and soil health. We have shown that while cover crops generally promote microbial biomass and activity, there are species-specific cover crop effects on soil microbial community composition that ultimately influence soil biological activity. This discovery paves the way for intentional management of the soil microbiome to enhance soil health through cover crop selection.
引用
收藏
页码:361 / 373
页数:13
相关论文
共 64 条
[1]   Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [J].
Berg, Gabriele ;
Smalla, Kornelia .
FEMS MICROBIOLOGY ECOLOGY, 2009, 68 (01) :1-13
[2]   Divergent composition but similar function of soil food webs of individual plants: plant species and community effects [J].
Bezemer, T. M. ;
Fountain, M. T. ;
Barea, J. M. ;
Christensen, S. ;
Dekker, S. C. ;
Duyts, H. ;
van Hal, R. ;
Harvey, J. A. ;
Hedlund, K. ;
Maraun, M. ;
Mikola, J. ;
Mladenov, A. G. ;
Robin, C. ;
de Ruiter, P. C. ;
Scheu, S. ;
Setala, H. ;
Smilauer, P. ;
van der Putten, W. H. .
ECOLOGY, 2010, 91 (10) :3027-3036
[3]  
Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6
[4]   Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles [J].
Bossio, DA ;
Scow, KM ;
Gunapala, N ;
Graham, KJ .
MICROBIAL ECOLOGY, 1998, 36 (01) :1-12
[5]   Coevolution of roots and mycorrhizas of land plants [J].
Brundrett, MC .
NEW PHYTOLOGIST, 2002, 154 (02) :275-304
[6]   High throughput phospholipid fatty acid analysis of soils [J].
Buyer, Jeffrey S. ;
Sasser, Myron .
APPLIED SOIL ECOLOGY, 2012, 61 :127-130
[7]   Factors affecting soil microbial community structure in tomato cropping systems [J].
Buyer, Jeffrey S. ;
Teasdale, John R. ;
Roberts, Daniel P. ;
Zasada, Inga A. ;
Maul, Jude E. .
SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (05) :831-841
[8]   Soil and plant effects on microbial community structure [J].
Buyer, JS ;
Roberts, DP ;
Russek-Cohen, E .
CANADIAN JOURNAL OF MICROBIOLOGY, 2002, 48 (11) :955-964
[9]   Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems [J].
Carrera, L. M. ;
Buyer, J. S. ;
Vinyard, B. ;
Abdul-Baki, A. A. ;
Sikora, L. J. ;
Teasdale, J. R. .
APPLIED SOIL ECOLOGY, 2007, 37 (03) :247-255
[10]   Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils [J].
Denef, Karolien ;
Roobroeck, Dries ;
Manimel Wadu, Mihiri C. W. ;
Lootens, Peter ;
Boeckx, Pascal .
SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (01) :144-153