A range of 1,3-aryl linked, bis-beta-diketone derivatives (LH2) has been employed to synthesise neutral bis(ligand), dinuclear complexes incorporating square-planar copper(II) and tris(ligand) dinuclear helical derivatives containing octahedral iron(III). The H-1 NMR spectra of the free ligands contain singlet peaks at ca. 16.2 ppm, indicative of enolic protons, confirming that the (bis) enol tautomer is present in solution. An X-ray structure of a ligand from the series incorporating tert-butyl terminal substituents confirms that the same tautomer persists in the solid and that the relative orientation of the bis-b-diketone fragments is such that the coordination vectors lie at approximately 120 to each other. The planar, dinuclear copper complexes form 1:2 adducts with pyridine and 4-(dimethylamino)pyridine, confirmed by X-ray structures, that incorporate five-coordinate metal centres. Based on this behaviour, the prospect of linking copper centres in the dinuclear complexes using the difunctional heterocyclic bases, 4,4'-bipyridine, 4,4'-trans-azopyridine and pyrazine as co-ligands has been probed. However, 4,4'-bipyridine was observed to coordinate through only one of its heterocyclic nitrogen atoms in the solid state to form a 1:2 ([Cu-2(L)(2)] : 4,4'-bipyridine) adduct, analogous to the structures obtained with the above mono-functional nitrogen bases. Nevertheless, an X-ray structure determination shows that the related difunctional base, 4,4'-trans-azopyridine, coordinates in a bridging fashion via both its heterocyclic nitrogen atoms on alternate sides of each planar [Cu-2(L)(2)] unit to produce an infinite one dimensional metallo chain. In contrast, with pyrazine, a new neutral, discrete assembly of type [Cu-4(L)(4)(pyrazine)(2)] is formed. The X-ray structure shows that two planar dinuclear complexes are linked by two pyrazine molecules in a sandwich arrangement such that the coordination environment of each copper ion is approximately square pyramidal with the overall tetranuclear structure thus taking the form of a dimer of dimers'.