Inverse renormalization group based on image super-resolution using deep convolutional networks

被引:9
作者
Shiina, Kenta [1 ,2 ]
Mori, Hiroyuki [1 ]
Tomita, Yusuke [3 ]
Lee, Hwee Kuan [2 ,4 ,5 ,6 ]
Okabe, Yutaka [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] ASTAR, Bioinformat Inst, 30 Biopolis St,07-01 Matrix, Singapore 138671, Singapore
[3] Shibaura Inst Technol, Coll Engn, Saitama 3308570, Japan
[4] Natl Univ Singapore, Sch Comp, 13 Comp Dr, Singapore 117417, Singapore
[5] Singapore Eye Res Inst SERI, 11 Third Hosp Ave, Singapore 168751, Singapore
[6] Image & Pervas Access Lab IPAL, 1 Fusionopolis Way,21-01 Connexis South Tower, Singapore 138632, Singapore
基金
日本学术振兴会;
关键词
MONTE-CARLO RENORMALIZATION; PHASE-TRANSITIONS; MODEL; PERCOLATION; SYSTEMS;
D O I
10.1038/s41598-021-88605-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The inverse renormalization group is studied based on the image super-resolution using the deep convolutional neural networks. We consider the improved correlation configuration instead of spin configuration for the spin models, such as the two-dimensional Ising and three-state Potts models. We propose a block-cluster transformation as an alternative to the block-spin transformation in dealing with the improved estimators. In the framework of the dual Monte Carlo algorithm, the block-cluster transformation is regarded as a transformation in the graph degrees of freedom, whereas the block-spin transformation is that in the spin degrees of freedom. We demonstrate that the renormalized improved correlation configuration successfully reproduces the original configuration at all the temperatures by the super-resolution scheme. Using the rule of enlargement, we repeatedly make inverse renormalization procedure to generate larger correlation configurations. To connect thermodynamics, an approximate temperature rescaling is discussed. The enlarged systems generated using the super-resolution satisfy the finite-size scaling.
引用
收藏
页数:9
相关论文
共 44 条
  • [1] [Anonymous], ARXIV14103831
  • [2] [Anonymous], 2013, ARXIV13013124
  • [3] MONTE-CARLO RENORMALIZATION-GROUP STUDY OF THE 3-DIMENSIONAL ISING-MODEL
    BAILLIE, CF
    GUPTA, R
    HAWICK, KA
    PAWLEY, GS
    [J]. PHYSICAL REVIEW B, 1992, 45 (18): : 10438 - 10453
  • [4] BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
  • [5] BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
  • [6] FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS
    BINDER, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02): : 119 - 140
  • [7] Monte Carlo renormalization of the 3D Ising model: Analyticity and convergence
    Blote, HWJ
    Heringa, JR
    Hoogland, A
    Meyer, EW
    Smit, TS
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (15) : 2613 - 2616
  • [8] Machine learning and the physical sciences
    Carleo, Giuseppe
    Cirac, Ignacio
    Cranmer, Kyle
    Daudet, Laurent
    Schuld, Maria
    Tishby, Naftali
    Vogt-Maranto, Leslie
    Zdeborova, Lenka
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
  • [9] Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]
  • [10] Image Super-Resolution Using Deep Convolutional Networks
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) : 295 - 307