Minimum-effort coordination games: Stochastic potential and logit equilibrium

被引:81
作者
Anderson, SP
Goerce, JK
Holt, CA
机构
[1] Univ Virginia, Dept Econ, Charlottesville, VA 22903 USA
[2] Univ Amsterdam, NL-1018 WB Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
coordination game; logit equilibrium; stochastic potential;
D O I
10.1006/game.2000.0800
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper revisits the minimum-effort coordination game with a continuum of Pareto-ranked Nash equilibria. Noise is introduced via a logit probabilistic choice function. The resulting logit equilibrium distribution of decisions is unique and maximizes a stochastic potential function. In the limit as the noise vanishes, the distribution converges to an outcome that is analogous to the risk-dominant outcome for 2 x 2 games. In accordance with experimental evidence, logit equilibrium efforts decrease with increases in effort costs and the number of players, even though these parameters do not affect the Nash equilibria. Classification Numbers: C72, C92. (C) 2001 Academic Press.
引用
收藏
页码:177 / 199
页数:23
相关论文
共 28 条
[11]   AN EVOLUTIONARY INTERPRETATION OF VANHUYCK, BATTALIO, AND BEIL EXPERIMENTAL RESULTS ON COORDINATION [J].
CRAWFORD, VP .
GAMES AND ECONOMIC BEHAVIOR, 1991, 3 (01) :25-59
[12]   STOCHASTIC EVOLUTIONARY GAME DYNAMICS [J].
FOSTER, D ;
YOUNG, P .
THEORETICAL POPULATION BIOLOGY, 1990, 38 (02) :219-232
[13]  
GOEREE JK, 1998, EXPT STUDY COSTLY CO
[14]  
Harsanyi J. C., 1988, GEN THEORY EQUILIBRI
[15]  
JOHN A, 1995, ENCY KEYNESIAN EC
[16]   LEARNING, MUTATION, AND LONG-RUN EQUILIBRIA IN GAMES [J].
KANDORI, M ;
MAILATH, GJ ;
ROB, R .
ECONOMETRICA, 1993, 61 (01) :29-56
[17]  
Luce R.D., 1959, INDIVIDUAL CHOICE BE
[18]   QUANTAL RESPONSE EQUILIBRIA FOR NORMAL-FORM GAMES [J].
MCKELVEY, RD ;
PALFREY, TR .
GAMES AND ECONOMIC BEHAVIOR, 1995, 10 (01) :6-38
[19]   Potential games [J].
Monderer, D ;
Shapley, LS .
GAMES AND ECONOMIC BEHAVIOR, 1996, 14 (01) :124-143
[20]  
Ochs J, 1995, HDB EXPT EC, P195