Characterizing the Stability of NISQ Devices

被引:7
作者
Dasgupta, Samudra [1 ,2 ]
Humble, Travis S. [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
来源
IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20) | 2020年
关键词
Quantum Computing; Benchmarks and Metrics; NISQ Stability; Moment Based Distance (MBD); Histogram Similarity;
D O I
10.1109/QCE49297.2020.00059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we focus on the question of stability of NISQ devices. The parameters that define the device stability profile are motivated by the work of DiVincenzo in [9] where the requirements for physical implementation of quantum computing are discussed. We develop the metrics and theoretical framework to quantify the DiVincenzo requirements and study the stability of those key metrics. The basis of our assessment is histogram similarity (in time and space). For identical experiments, devices which produce reproducible histograms in time, and similar histograms in space, are considered more reliable. To investigate such reliability concerns robustly, we propose a moment-based distance (MBD) metric. We illustrate our methodology using data collected from IBM's Yorktown device. Two types of assessments are discussed: spatial stability and temporal stability.
引用
收藏
页码:419 / 429
页数:11
相关论文
共 27 条
[1]  
Abdo B., 2020, IBM RES BLOG
[2]  
Aleksandrowicz G., 2019, METHOD PRODUCING HUM
[3]  
[Anonymous], 2002, McGraw-Hill electrical and electronic engineering series
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Testing identity of collections of quantum states: sample complexity analysis [J].
Fanizza, Marco ;
Salvia, Raffaele ;
Giovannetti, Vittorio .
QUANTUM, 2023, 7
[6]  
Cover T. M., 1991, Elements of Information Theory
[7]  
DiVincenzo D., 2008, ARXIVQUANTPH000207
[8]   Cloud Quantum Computing of an Atomic Nucleus [J].
Dumitrescu, E. F. ;
McCaskey, A. J. ;
Hagen, G. ;
Jansen, G. R. ;
Morris, T. D. ;
Papenbrock, T. ;
Pooser, R. C. ;
Dean, D. J. ;
Lougovski, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (21)
[9]   Accrediting outputs of noisy intermediate-scale quantum computing devices [J].
Ferracin, Samuele ;
Kapourniotis, Theodoros ;
Datta, Animesh .
NEW JOURNAL OF PHYSICS, 2019, 21 (11)
[10]  
Gambetta J, 2019, IBM RES BLOG