Alternative EM Algorithms for Nonlinear State-space Models

被引:0
|
作者
Wahlstrom, Johan [1 ]
Jalden, Joakim [3 ]
Skog, Isaac [2 ]
Handel, Peter [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Linkoping Univ, Dept Elect Engn, Linkoping, Sweden
[3] KTH Royal Inst Technol, Dept Informat Sci & Engn, Stockholm, Sweden
来源
2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2018年
关键词
Expectation-maximization; system identification; the Gauss-Newton method; Levenberg-Marquardt; trust region; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ECM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton's method. We propose alternative expectation-maximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.
引用
收藏
页码:1260 / 1267
页数:8
相关论文
共 50 条
  • [41] Hybrid evolutionary identification of output-error state-space models
    Dertimanis, Vasilis K.
    Chatzi, Eleni N.
    Spiridonakos, Minas D.
    STRUCTURAL MONITORING AND MAINTENANCE, 2014, 1 (04): : 427 - 449
  • [42] An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
    Gonzalez, Rodrigo A.
    Cedeno, Angel L.
    Coronel, Maria
    Aguero, Juan C.
    Rojas, Cristian R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 4204 - 4209
  • [43] Numerical Assessment of Polynomial Nonlinear State-Space and Nonlinear-Mode Models for Near-Resonant Vibrations
    Balaji, Nidish Narayanaa
    Lian, Shuqing
    Scheel, Maren
    Brake, Matthew R. W.
    Tiso, Paolo
    Noel, Jean-Philippe
    Krack, Malte
    VIBRATION, 2020, 3 (03): : 320 - 342
  • [44] Space-Filling Input Design for Nonlinear State-Space Identification
    Kiss, Mate
    Toth, Roland
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2024, 58 (15): : 562 - 567
  • [45] Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach
    Zeng, Nianyin
    Wang, Zidong
    Li, Yurong
    Du, Min
    Liu, Xiaohui
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) : 321 - 327
  • [46] Optimal input design for minimum-variance estimation of parameters in nonlinear state-space models
    Keesman, Karel J.
    IFAC PAPERSONLINE, 2018, 51 (15): : 365 - 370
  • [47] Subspace Identification of Countercurrent Rare Earth Extraction Process Based on Nonlinear State-space Models
    Zhong, Lusheng
    Fan, Xiaoping
    Yang, Hui
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 5757 - 5761
  • [48] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Junhong Li
    Wei Xing Zheng
    Juping Gu
    Liang Hua
    Circuits, Systems, and Signal Processing, 2018, 37 : 2374 - 2393
  • [49] Smoothing algorithms for state–space models
    Mark Briers
    Arnaud Doucet
    Simon Maskell
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 61 - 89
  • [50] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962