Alternative EM Algorithms for Nonlinear State-space Models

被引:0
|
作者
Wahlstrom, Johan [1 ]
Jalden, Joakim [3 ]
Skog, Isaac [2 ]
Handel, Peter [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Linkoping Univ, Dept Elect Engn, Linkoping, Sweden
[3] KTH Royal Inst Technol, Dept Informat Sci & Engn, Stockholm, Sweden
关键词
Expectation-maximization; system identification; the Gauss-Newton method; Levenberg-Marquardt; trust region; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ECM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton's method. We propose alternative expectation-maximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.
引用
收藏
页码:1260 / 1267
页数:8
相关论文
共 50 条
  • [41] Structured state-space models are deep Wiener modelsStructured state-space models are deep Wiener models
    Bonassi, Fabio
    Andersson, Carl
    Mattsson, Per
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2024, 58 (15): : 247 - 252
  • [42] State-space models of pipelines
    Geiger, Gerhard
    Marko, Drago
    PROCEEDINGS OF THE 17TH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2006, : 56 - +
  • [43] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [44] Tuning nonlinear state-space models using unconstrained multiple shooting
    Decuyper, J.
    Runacres, M. C.
    Schoukens, J.
    Tiels, K.
    IFAC PAPERSONLINE, 2020, 53 (02): : 341 - 347
  • [45] An efficient particle-based online EM algorithm for general state-space models
    Olsson, Jimmy
    Westerborn, Johan
    IFAC PAPERSONLINE, 2015, 48 (28): : 963 - 968
  • [46] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [47] Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models
    Umberto Picchini
    Adeline Samson
    Computational Statistics, 2018, 33 : 179 - 212
  • [48] State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering
    Yang, Yukai
    Bauwens, Luc
    ECONOMETRICS, 2018, 6 (04):
  • [49] Marginalized particle filters for mixed linear/nonlinear state-space models
    Schön, T
    Gustafsson, F
    Nordlund, PJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (07) : 2279 - 2289
  • [50] Kernel-based learning of stable nonlinear state-space models
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2897 - 2902