Alternative EM Algorithms for Nonlinear State-space Models

被引:0
|
作者
Wahlstrom, Johan [1 ]
Jalden, Joakim [3 ]
Skog, Isaac [2 ]
Handel, Peter [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Linkoping Univ, Dept Elect Engn, Linkoping, Sweden
[3] KTH Royal Inst Technol, Dept Informat Sci & Engn, Stockholm, Sweden
来源
2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2018年
关键词
Expectation-maximization; system identification; the Gauss-Newton method; Levenberg-Marquardt; trust region; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ECM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton's method. We propose alternative expectation-maximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.
引用
收藏
页码:1260 / 1267
页数:8
相关论文
共 50 条
  • [31] Improved Initialization for Nonlinear State-Space Modeling
    Marconato, Anna
    Sjoberg, Jonas
    Suykens, Johan A. K.
    Schoukens, Johan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (04) : 972 - 980
  • [32] A nonlinear state-space approach to hysteresis identification
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 171 - 184
  • [33] A polynomial nonlinear state-space toolbox for Matlab
    Tiels, Koen
    PROCEEDINGS OF THE 21ST IMEKO TC-4 INTERNATIONAL SYMPOSIUM ON UNDERSTANDING THE WORLD THROUGH ELECTRICAL AND ELECTRONIC MEASUREMENT AND 19TH INTERNATIONAL WORKSHOP ON ADC MODELLING AND TESTING, 2016, : 28 - 31
  • [34] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [35] Inferring Gene Regulatory Networks via Nonlinear State-Space Models and Exploiting Sparsity
    Noor, Amina
    Serpedin, Erchin
    Nounou, Mohamed
    Nounou, Hazem N.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (04) : 1203 - 1211
  • [36] Recovering Wiener-Hammerstein nonlinear state-space models using linear algebra
    Dreesen, Philippe
    Ishteva, Mariya
    Schoukens, Johan
    IFAC PAPERSONLINE, 2015, 48 (28): : 951 - 956
  • [37] Identification of MIMO switched state-space models
    Bako, Laurent
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 71 - 76
  • [38] Marginalized approximate filtering of state-space models
    Dedecius, K.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 1 - 12
  • [39] Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities
    Salhi H.
    Kamoun S.
    International Journal of Engineering Systems Modelling and Simulation, 2017, 9 (03) : 127 - 135
  • [40] Review of State-Space Models for Fisheries Science
    Aeberhard, William H.
    Flemming, Joanna Mills
    Nielsen, Anders
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 5, 2018, 5 : 215 - 235