Alternative EM Algorithms for Nonlinear State-space Models

被引:0
|
作者
Wahlstrom, Johan [1 ]
Jalden, Joakim [3 ]
Skog, Isaac [2 ]
Handel, Peter [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Linkoping Univ, Dept Elect Engn, Linkoping, Sweden
[3] KTH Royal Inst Technol, Dept Informat Sci & Engn, Stockholm, Sweden
关键词
Expectation-maximization; system identification; the Gauss-Newton method; Levenberg-Marquardt; trust region; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ECM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton's method. We propose alternative expectation-maximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.
引用
收藏
页码:1260 / 1267
页数:8
相关论文
共 50 条
  • [21] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [22] State-space stochastic volatility models: A review of estimation algorithms
    Capobianco, E
    APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1996, 12 (04): : 265 - 279
  • [23] ON ALTERNATIVE STATE-SPACE REPRESENTATIONS OF TIME-SERIES MODELS
    AOKI, M
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1988, 12 (2-3): : 595 - 607
  • [24] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867
  • [25] Separate Initialization of Dynamics and Nonlinearities in Nonlinear State-Space Models
    Marconato, Anna
    Sjoeberg, Jonas
    Suykens, Johan
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2104 - 2108
  • [26] Adaptive estimation of FCG using nonlinear state-space models
    Moussas, VC
    Katsikas, SK
    Lainiotis, DG
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (04) : 705 - 722
  • [27] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    AUTOMATICA, 2023, 148
  • [28] Parameter identification for nonlinear models from a state-space approach
    Matz, Jules
    Birouche, Abderazik
    Mourllion, Benjamin
    Bouziani, Fethi
    Basset, Michel
    IFAC PAPERSONLINE, 2020, 53 (02): : 13910 - 13915
  • [29] Nonlinear Regime-Switching State-Space (RSSS) Models
    Chow, Sy-Miin
    Zhang, Guangjian
    PSYCHOMETRIKA, 2013, 78 (04) : 740 - 768
  • [30] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428