Alternative EM Algorithms for Nonlinear State-space Models

被引:0
|
作者
Wahlstrom, Johan [1 ]
Jalden, Joakim [3 ]
Skog, Isaac [2 ]
Handel, Peter [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
[2] Linkoping Univ, Dept Elect Engn, Linkoping, Sweden
[3] KTH Royal Inst Technol, Dept Informat Sci & Engn, Stockholm, Sweden
来源
2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2018年
关键词
Expectation-maximization; system identification; the Gauss-Newton method; Levenberg-Marquardt; trust region; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; ECM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton's method. We propose alternative expectation-maximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.
引用
收藏
页码:1260 / 1267
页数:8
相关论文
共 50 条
  • [21] A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem
    Li, Junhong
    Zheng, Wei Xing
    Gu, Juping
    Hua, Liang
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (06) : 2374 - 2393
  • [22] Improving Linear State-Space Models with Additional NIterations
    Gumussoy, Suat
    Ozdemir, Ahmet Arda
    McKelvey, Tomas
    Ljung, Lennart
    Gibanica, Mladen
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 341 - 346
  • [23] Estimating mixed-effects state-space models via particle filters and the EM algorithm
    Hamdi, Faycal
    Lellou, Chahrazed
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (11) : 2363 - 2384
  • [24] Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms
    Singer, Hermann
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2011, 95 (04) : 375 - 413
  • [25] Bootstrapping Periodic State-Space Models
    Guerbyenne, Hafida
    Hamdi, Faycal
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 374 - 401
  • [26] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77
  • [27] RECURSIVE PREDICTION ERROR METHODS FOR ONLINE ESTIMATION IN NONLINEAR STATE-SPACE MODELS
    LJUNGQUIST, D
    BALCHEN, JG
    MODELING IDENTIFICATION AND CONTROL, 1994, 15 (02) : 109 - 121
  • [28] Shooting methods for identification of nonlinear state-space grey-box models
    Retzler, Andras
    Swevers, Jan
    Gillis, Joris
    Kollar, Zsolt
    2022 IEEE 17TH INTERNATIONAL CONFERENCE ON ADVANCED MOTION CONTROL (AMC), 2022, : 207 - 212
  • [29] Initialization of nonlinear state-space models applied to the Wiener-Hammerstein benchmark
    Marconato, Anna
    Sjoberg, Jonas
    Schoukens, Johan
    CONTROL ENGINEERING PRACTICE, 2012, 20 (11) : 1126 - 1132
  • [30] Learning Nonlinear State-Space Models Using Smooth Particle-Filter-Based Likelihood Approximations
    Svensson, Andreas
    Lindsten, Fredrik
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 652 - 657