Non-Standard Skorokhod Convergence of Levy-Driven Convolution Integrals in Hilbert Spaces

被引:5
作者
Pavlyukevich, Ilya [1 ]
Riedle, Markus [2 ]
机构
[1] Univ Jena, Inst Math, Jena, Germany
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Integrated Ornstein-Uhlenbeck process; Stochastic convolution integral; Levy process; Convergence in probability; M-1-Skorokhod topology; ORNSTEIN-UHLENBECK PROCESSES; BOUNDEDNESS; REGULARITY; CONTINUITY; NOISE;
D O I
10.1080/07362994.2014.988358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence in probability in the non-standard M-1 Skorokhod topology of the Hilbert valued stochastic convolution integrals of the type to a process driven by a Levy process L. In Banach spaces, we introduce strong, weak. and product modes of -convergence, prove a criterion for the -convergence in probability of stochastically continuous cadlag processes in terms of the convergence in probability of the finite dimensional marginals and a good behavior of the corresponding oscillation functions, and establish criteria for the convergence in probability of Levy driven stochastic convolutions. The theory is applied to the infinitely dimensional integrated Ornstein-Uhlenbeck processes with diagonalizable generators.
引用
收藏
页码:271 / 305
页数:35
相关论文
共 28 条