Harmonic polynomials associated with reflection groups

被引:11
作者
Xu, Y [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2000年 / 43卷 / 04期
关键词
h-harmonics; reflection group; Dunkl's operators;
D O I
10.4153/CMB-2000-057-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Maxwell's representation of harmonic polynomials to h-harmonics associated to a reflection invariant weight function h(k). Let D-i, 1 less than or equal to i less than or equal to d, be Dunkl's operators associated with a reflection group. For any homogeneous polynomial P of degree n, we prove the polynomial \x\P2 gamma +d-2+2n(D){1/\x\(2 gamma +d-2)} is a h-harmonic polynomial of degree n, where gamma = Sigma (ki) and D = (D-1, ..., D-d). The construction yields a basis for h-harmonics. We also discuss self-adjoint operators acting on the space of h-harmonics.
引用
收藏
页码:496 / 507
页数:12
相关论文
共 14 条
[1]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[2]   INTERTWINING-OPERATORS ASSOCIATED TO THE GROUP S-3 [J].
DUNKL, CF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3347-3374
[4]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[5]   REFLECTION GROUPS AND ORTHOGONAL POLYNOMIALS ON THE SPHERE [J].
DUNKL, CF .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :33-60
[6]   Computing with differential-difference operators [J].
Dunkl, CF .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (06) :819-826
[7]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, VII
[8]  
Hobson E., 1955, THEORY SPHERICAL ELL
[9]  
MULLER C, 1997, ANAL SPHERICAL SYMME
[10]   A NEW CONSTRUCTION OF YOUNG SEMINORMAL REPRESENTATION OF THE SYMMETRIC-GROUPS [J].
MURPHY, GE .
JOURNAL OF ALGEBRA, 1981, 69 (02) :287-297