A FEM-BEM formulation for an exterior quasilinear elliptic problem in the plane

被引:0
作者
Liu, Dongjie [1 ]
Yu, Dehao [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100080, Peoples R China
关键词
boundary element; coupling; finite element; quasilinear problems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.
引用
收藏
页码:378 / 389
页数:12
相关论文
共 18 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
Chen C., 1992, BOUNDARY ELEMENT MET
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
Gatica G.N., 1995, PITMAN RES NOTES MAT, V331
[5]   ON THE COUPLED BEM AND FEM FOR A NONLINEAR EXTERIOR DIRICHLET PROBLEM IN R2 [J].
GATICA, GN ;
HSIAO, GC .
NUMERISCHE MATHEMATIK, 1992, 61 (02) :171-214
[6]  
HAN H, COMMUN MATH IN PRESS
[7]   Analysis of artificial boundary conditions for exterior boundary value problems in three dimensions [J].
Han, HD ;
He, CH ;
Wu, XN .
NUMERISCHE MATHEMATIK, 2000, 85 (03) :367-386
[8]   A solution method for a certain nonlinear interface problem in unbounded domains [J].
Hu, Q ;
Yu, D .
COMPUTING, 2001, 67 (02) :119-140
[9]   A coupling of FEM-BEM for a kind of Signorini contact problem [J].
Hu, QY ;
Yu, DH .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (07) :895-906
[10]  
HU QY, 2001, SCI CHINA SER A, V31, P124