Tumor origin detection with tissue-specific miRNA and DNA methylation markers

被引:312
作者
Tang, Wei [1 ,2 ]
Wan, Shixiang [1 ]
Yang, Zhen [3 ]
Teschendorff, Andrew E. [3 ,4 ]
Zou, Quan [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn, Sch Comp Sci & Technol, Tianjin 300050, Peoples R China
[2] Tianjin Univ, Sch Chem Engn, Dept Biol Engn, Tianjin 300050, Peoples R China
[3] CAS MPG Partner Inst Computat Biol, Key Lab Computat Biol, Shanghai 200031, Peoples R China
[4] UCL, UCL Canc Inst, Stat Canc Genom, Paul OGorman Bldg, London WC1E 6BT, England
关键词
CANCER; IDENTIFICATION; MICRORNAS; ASSOCIATIONS; IDENTIFY;
D O I
10.1093/bioinformatics/btx622
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A clear identification of the primary site of tumor is of great importance to the next targeted site-specific treatments and could efficiently improve patient's overall survival. Even though many classifiers based on gene expression had been proposed to predict the tumor primary, only a few studies focus on using DNA methylation (DNAm) profiles to develop classifiers, and none of them compares the performance of classifiers based on different profiles. Results: We introduced novel selection strategies to identify highly tissue-specific CpG sites and then used the random forest approach to construct the classifiers to predict the origin of tumors. We also compared the prediction performance by applying similar strategy on miRNA expression profiles. Our analysis indicated that these classifiers had an accuracy of 96.05% (Maximum-Relevance-Maximum-Distance: 90.02-99.99%) or 95.31% (principal component analysis: 79.82-99.91%) on independent DNAm datasets, and an overall accuracy of 91.30% (range 79.33-98.74%) on independent miRNA test sets for predicting tumor origin. This suggests that our feature selection methods are very effective to identify tissue-specific biomarkers and the classifiers we developed can efficiently predict the origin of tumors. We also developed a user-friendly webserver that helps users to predict the tumor origin by uploading miRNA expression or DNAm profile of their interests.
引用
收藏
页码:398 / 406
页数:9
相关论文
共 33 条
[1]  
Al-Shahib Ali, 2005, Appl Bioinformatics, V4, P195, DOI 10.2165/00822942-200594030-00004
[2]  
[Anonymous], GENITOURINARY PATHOL
[3]  
[Anonymous], 2009, NeurIPS
[4]   Integrated genomic characterization of adrenocortical carcinoma [J].
Assie, Guillaume ;
Letouze, Eric ;
Fassnacht, Martin ;
Jouinot, Anne ;
Luscap, Windy ;
Barreau, Olivia ;
Omeiri, Hanin ;
Rodriguez, Stephanie ;
Perlemoine, Karine ;
Rene-Corail, Fernande ;
Elarouci, Nabila ;
Sbiera, Silviu ;
Kroiss, Matthias ;
Allolio, Bruno ;
Waldmann, Jens ;
Quinkler, Marcus ;
Mannelli, Massimo ;
Mantero, Franco ;
Papathomas, Thomas ;
De Krijger, Ronald ;
Tabarin, Antoine ;
Kerlan, Veronique ;
Baudin, Eric ;
Tissier, Frederique ;
Dousset, Bertrand ;
Groussin, Lionel ;
Amar, Laurence ;
Clauser, Eric ;
Bertagna, Xavier ;
Ragazzon, Bruno ;
Beuschlein, Felix ;
Libe, Rossella ;
de Reynies, Aurelien ;
Bertherat, Jerome .
NATURE GENETICS, 2014, 46 (06) :607-612
[5]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Principal component analysis [J].
Bro, Rasmus ;
Smilde, Age K. .
ANALYTICAL METHODS, 2014, 6 (09) :2812-2831
[8]   Identification of metastasis-related microRNAs in hepatocellular carcinoma [J].
Budhu, Anuradha ;
Jia, Hu-Liang ;
Forgues, Marshonna ;
Liu, Chang-Gong ;
Goldsteir, David ;
Lam, Amy ;
Zanetti, Krista A. ;
Ye, Qing-Hai ;
Qin, Lun-Yju ;
Croce, Carlo M. ;
Tang, Zhao-You ;
Wang, Xin Wei .
HEPATOLOGY, 2008, 47 (03) :897-907
[9]  
Daugaard D., 2009, TXB MED ONCOLOGY, P313
[10]  
Dedeurwaerder S., 2011, EVALUATION INFINIUM