Van der Waals heterostructures of P, BSe, and SiC monolayers

被引:59
|
作者
Idrees, M. [1 ]
Din, H. U. [1 ]
Khan, S. A. [1 ]
Ahmad, Iftikhar [2 ]
Gan, Li-Yong [3 ]
Nguyen, Chuong V. [4 ]
Amin, B. [1 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Abbottabad 22010, Pakistan
[3] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; CHARGE-TRANSFER; HIGH-STABILITY; BAND-GAP; MOS2; SEMICONDUCTOR;
D O I
10.1063/1.5082884
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure, optical, and photocatalytic properties of P, BSe, and SiC monolayers and their van der Waals heterostructures are investigated by (hybrid) first-principle calculations. The stability of the heterostructures and their corresponding induced-strain/unstrain mono layers are confirmed by the phonon spectra calculations. Similar to the corresponding parent monolayers, P-BSe (BSe-SiC) heterostructures are indirect type-II (type-I) bandgap semiconductors. A tensile strain of 10% (2%) transforms P-BSe (BSe-SiC) to type-I (type-II) direct bandgap nature. Interestingly, irrespective of the corresponding monolayers, the P-SiC heterostructure is a direct bandgap (type-II) semiconductor. The calculated electron and hole carrier mobilities of these heterostructures are in the range of 1.2 x 10(4) cm(2)/Vs to 68.56 x 10(4) cm(2)/Vs. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions are dominated by excitons. The valence and conduction band edges straddle the standard redox potentials in P-BSe, BSe-SiC, and P-SiC (strained) heterostructures, making them promising candidates for water splitting in the acidic solution. An induced compressive strain of 3.5% makes P suitable for water splitting at pH = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Gapless van der Waals Heterostructures for Infrared Optoelectronic Devices
    Wen, Yao
    He, Peng
    Wang, Qisheng
    Yao, Yuyu
    Zhang, Yu
    Hussain, Sabir
    Wang, Zhenxing
    Cheng, Ruiqing
    Yin, Lei
    Sendeku, Marshet Getaye
    Wang, Feng
    Jiang, Chao
    He, Jun
    ACS NANO, 2019, 13 (12) : 14519 - 14528
  • [42] Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides
    Qi, Haimei
    Wang, Lina
    Sun, Jie
    Long, Yi
    Hu, Peng
    Liu, Fucai
    He, Xuexia
    CRYSTALS, 2018, 8 (01):
  • [43] Van der Waals organic/inorganic heterostructures in the two-dimensional limit
    Xu, Xiaomin
    Lou, Ziru
    Cheng, Simin
    Chow, Philip C. Y.
    Koch, Norbert
    Cheng, Hui-Ming
    CHEM, 2021, 7 (11): : 2989 - 3026
  • [44] Observation of interlayer phonon modes in van der Waals heterostructures
    Lui, C. H.
    Ye, Zhipeng
    Ji, Chao
    Chiu, Kuan-Chang
    Chou, Cheng-Tse
    Andersen, Trond I.
    Means-Shively, Casie
    Anderson, Heidi
    Wu, Jenn-Ming
    Kidd, Tim
    Lee, Yi-Hsien
    He, Rui
    PHYSICAL REVIEW B, 2015, 91 (16)
  • [45] Mechanical peeling of van der Waals heterostructures: Theory and simulations
    Lin, Kui
    Zhao, Ya-Pu
    EXTREME MECHANICS LETTERS, 2019, 30
  • [46] Asymmetric electric field screening in van der Waals heterostructures
    Li, Lu Hua
    Tian, Tian
    Cai, Qiran
    Shih, Chih-Jen
    Santos, Elton J. G.
    NATURE COMMUNICATIONS, 2018, 9
  • [47] Excitons in two-dimensional van der Waals heterostructures
    Liu, Hao
    Zong, Yixin
    Wang, Pan
    Wen, Hongyu
    Wu, Haibin
    Xia, Jianbai
    Wei, Zhongming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (05)
  • [48] Heterostructures formed through abraded van der Waals materials
    Nutting, Darren
    Felix, Jorlandio F.
    Tillotson, Evan
    Shin, Dong-Wook
    De Sanctis, Adolfo
    Chang, Hong
    Cole, Nick
    Russo, Saverio
    Woodgate, Adam
    Leontis, Ioannis
    Fernandez, Henry A.
    Craciun, Monica F.
    Haigh, Sarah J.
    Withers, Freddie
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Probing the interfacial coupling in ternary van der Waals heterostructures
    Wu, Heng
    Lin, Miao-Ling
    Leng, Yu-Chen
    Chen, Xue
    Zhou, Yan
    Zhang, Jun
    Tan, Ping-Heng
    NPJ 2D MATERIALS AND APPLICATIONS, 2022, 6 (01)
  • [50] Tunable Electronic Properties and Potential Applications of BSe/XS2 (X=Mo, W) van der Waals Heterostructures
    Zhang, Dingbo
    Gao, Qiang
    Chen, Yuanzheng
    Xia, Yudong
    Wang, Hui
    Wang, Hongyan
    Ni, Yuxiang
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (10)