Van der Waals heterostructures of P, BSe, and SiC monolayers

被引:59
|
作者
Idrees, M. [1 ]
Din, H. U. [1 ]
Khan, S. A. [1 ]
Ahmad, Iftikhar [2 ]
Gan, Li-Yong [3 ]
Nguyen, Chuong V. [4 ]
Amin, B. [1 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Abbottabad 22010, Pakistan
[3] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; CHARGE-TRANSFER; HIGH-STABILITY; BAND-GAP; MOS2; SEMICONDUCTOR;
D O I
10.1063/1.5082884
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure, optical, and photocatalytic properties of P, BSe, and SiC monolayers and their van der Waals heterostructures are investigated by (hybrid) first-principle calculations. The stability of the heterostructures and their corresponding induced-strain/unstrain mono layers are confirmed by the phonon spectra calculations. Similar to the corresponding parent monolayers, P-BSe (BSe-SiC) heterostructures are indirect type-II (type-I) bandgap semiconductors. A tensile strain of 10% (2%) transforms P-BSe (BSe-SiC) to type-I (type-II) direct bandgap nature. Interestingly, irrespective of the corresponding monolayers, the P-SiC heterostructure is a direct bandgap (type-II) semiconductor. The calculated electron and hole carrier mobilities of these heterostructures are in the range of 1.2 x 10(4) cm(2)/Vs to 68.56 x 10(4) cm(2)/Vs. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions are dominated by excitons. The valence and conduction band edges straddle the standard redox potentials in P-BSe, BSe-SiC, and P-SiC (strained) heterostructures, making them promising candidates for water splitting in the acidic solution. An induced compressive strain of 3.5% makes P suitable for water splitting at pH = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Strategy for transferring van der Waals materials and heterostructures
    Fan, Sidi
    Li, Xianxu
    Mondal, Ashok
    Wang, Wenjie
    Lee, Young Hee
    2D MATERIALS, 2024, 11 (03)
  • [32] Accurate Optical Metrology of van der Waals Monolayers and Heterostructures from the Interference of Interface Polariton Waves
    Qin, Kang
    Zuo, Zong-yan
    Peng, Sheng
    Liu, Kai
    Yang, Hui
    Zhang, Qi-hang
    Lu, Yan-qing
    Zhu, Yong-yuan
    Zhang, Xue-jin
    ADVANCED OPTICAL MATERIALS, 2024, 12 (01)
  • [33] Emerging Magnetic Interactions in van der Waals Heterostructures
    Huang, Yulong
    Wolowiec, Christian
    Zhu, Taishan
    Hu, Yong
    An, Lu
    Li, Zheng
    Grossman, Jeffrey C.
    Schuller, Ivan K.
    Ren, Shenqiang
    NANO LETTERS, 2020, 20 (11) : 7852 - 7859
  • [34] Reliably straining suspended van der Waals heterostructures
    Nazzari, Daniele
    Genser, Jakob
    Sistani, Masiar
    Bartmann, Maximilian G.
    Cartoixa, Xavier
    Rurali, Riccardo
    Weber, Walter M.
    Lugstein, Alois
    APL MATERIALS, 2023, 11 (11)
  • [35] Interlayer exciton dynamics in van der Waals heterostructures
    Ovesen, Simon
    Brem, Samuel
    Linderalv, Christopher
    Kuisma, Mikael
    Korn, Tobias
    Erhart, Paul
    Selig, Malte
    Malic, Ermin
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [36] Optoelectronic and Photocatalytic Properties of SiC and VXY (X?=?Cl, Br and Y?=?Se, Te) van der Waals Heterostructures
    Ashtar, Malik
    Marwat, Mohsin Ali
    Li, Zhetao
    Yang, Ying
    Cao, Dawei
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (12) : 8038 - 8049
  • [37] First-Principles Study on Transition-Metal Dichalcogenide/BSe van der Waals Heterostructures: A Promising Water-Splitting Photocatalyst
    Luo, Yi
    Ren, Kai
    Wang, Sake
    Chou, Jyh-Pin
    Yu, Jin
    Sun, Zhengming
    Sun, Minglei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (37) : 22742 - 22751
  • [38] Solar Energy Harvesting in Type II van der Waals Heterostructures of Semiconducting Group III Monochalcogenide Monolayers
    Rawat, Ashima
    Dimple, Raihan Ahammed
    Jena, Nityasagar
    Mohanta, Manish Kumar
    De Sarkar, Abir
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (20) : 12666 - 12675
  • [39] Direct Growth of van der Waals Tin Diiodide Monolayers
    Yuan, Qian-Qian
    Zheng, Fawei
    Shi, Zhi-Qiang
    Li, Qi-Yuan
    Lv, Yang-Yang
    Chen, Yanbin
    Zhang, Ping
    Li, Shao-Chun
    ADVANCED SCIENCE, 2021, 8 (20)
  • [40] Complementary Tunneling Behaviors in van der Waals Vertical Heterostructures
    Ma, Likuan
    Liu, Liting
    Lu, Zheyi
    Chen, Yang
    Kong, Lingan
    Tao, Quanyang
    Li, Zhiwei
    Li, Wanying
    Song, Wenjing
    Lu, Donglin
    Liao, Lei
    Liu, Yuan
    PHYSICAL REVIEW APPLIED, 2022, 17 (06)