Van der Waals heterostructures of P, BSe, and SiC monolayers

被引:59
|
作者
Idrees, M. [1 ]
Din, H. U. [1 ]
Khan, S. A. [1 ]
Ahmad, Iftikhar [2 ]
Gan, Li-Yong [3 ]
Nguyen, Chuong V. [4 ]
Amin, B. [1 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Abbottabad 22010, Pakistan
[3] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; CHARGE-TRANSFER; HIGH-STABILITY; BAND-GAP; MOS2; SEMICONDUCTOR;
D O I
10.1063/1.5082884
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure, optical, and photocatalytic properties of P, BSe, and SiC monolayers and their van der Waals heterostructures are investigated by (hybrid) first-principle calculations. The stability of the heterostructures and their corresponding induced-strain/unstrain mono layers are confirmed by the phonon spectra calculations. Similar to the corresponding parent monolayers, P-BSe (BSe-SiC) heterostructures are indirect type-II (type-I) bandgap semiconductors. A tensile strain of 10% (2%) transforms P-BSe (BSe-SiC) to type-I (type-II) direct bandgap nature. Interestingly, irrespective of the corresponding monolayers, the P-SiC heterostructure is a direct bandgap (type-II) semiconductor. The calculated electron and hole carrier mobilities of these heterostructures are in the range of 1.2 x 10(4) cm(2)/Vs to 68.56 x 10(4) cm(2)/Vs. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions are dominated by excitons. The valence and conduction band edges straddle the standard redox potentials in P-BSe, BSe-SiC, and P-SiC (strained) heterostructures, making them promising candidates for water splitting in the acidic solution. An induced compressive strain of 3.5% makes P suitable for water splitting at pH = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Electronic properties of two-dimensional G/GaN(SiC) van der Waals heterostructures
    Zheng, Jiangshan
    Li, Enling
    Cui, Zhen
    Ma, Deming
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
  • [22] Optically Active MXenes in Van der Waals Heterostructures
    Purbayanto, Muhammad A. K.
    Chandel, Madhurya
    Birowska, Magdalena
    Rosenkranz, Andreas
    Jastrzebska, Agnieszka M.
    ADVANCED MATERIALS, 2023, 35 (42)
  • [23] Evidence for moire excitons in van der Waals heterostructures
    Kha Tran
    Moody, Galan
    Wu, Fengcheng
    Lu, Xiaobo
    Choi, Junho
    Kim, Kyounghwan
    Rai, Amritesh
    Sanchez, Daniel A.
    Quan, Jiamin
    Singh, Akshay
    Embley, Jacob
    Zepeda, Andre
    Campbell, Marshall
    Autry, Travis
    Taniguchi, Takashi
    Watanabe, Kenji
    Lu, Nanshu
    Banerjee, Sanjay K.
    Silverman, Kevin L.
    Kim, Suenne
    Tutuc, Emanuel
    Yang, Li
    MacDonald, Allan H.
    Li, Xiaoqin
    NATURE, 2019, 567 (7746) : 71 - +
  • [24] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [25] Memory Devices Based on Van der Waals Heterostructures
    Liu, Chunsen
    Zhou, Peng
    ACS MATERIALS LETTERS, 2020, 2 (09): : 1101 - 1105
  • [26] Slidable atomic layers in van der Waals heterostructures
    Kobayashi, Yu
    Taniguchi, Takashi
    Watanabe, Kenji
    Maniwa, Yutaka
    Miyata, Yasumitsu
    APPLIED PHYSICS EXPRESS, 2017, 10 (04)
  • [27] Tunable Schottky contacts in the antimonene/graphene van der Waals heterostructures
    Li, Wei
    Wang, Xinlian
    Dai, Xianqi
    SOLID STATE COMMUNICATIONS, 2017, 254 : 37 - 41
  • [28] Exploring the Stability of Twisted van der Waals Heterostructures
    Silva, Andrea
    Claerbout, Victor E. P.
    Polcar, Tomas
    Kramer, Denis
    Nicolini, Paolo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45214 - 45221
  • [29] Transfer assembly for two-dimensional van der Waals heterostructures
    Fan, Sidi
    Vu, Quoc An
    Tran, Minh Dao
    Adhikari, Subash
    Lee, Young Hee
    2D MATERIALS, 2020, 7 (02):
  • [30] Optimising graphene visibility in van der Waals heterostructures
    Menon, Thanmay S.
    Mishra, Simli
    Antony, Vidhu Catherine
    Dixit, Kiranmayi
    Kakkar, Saloni
    Ahmed, Tanweer
    Slam, Saurav
    Jayaraman, Aditya
    Hsieh, Kimberly
    Karnatak, Paritosh
    Ghosh, Arindam
    NANOTECHNOLOGY, 2019, 30 (39)