Understanding mitochondrial complex I assembly in health and disease

被引:327
作者
Mimaki, Masakazu [1 ]
Wang, Xiaonan [1 ]
McKenzie, Matthew [2 ]
Thorburn, David R. [3 ,4 ,5 ]
Ryan, Michael T. [1 ]
机构
[1] La Trobe Univ, Dept Biochem, Bundoora, Vic 3086, Australia
[2] Monash Inst Med Res, Melbourne, Vic 3168, Australia
[3] Univ Melbourne, Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic 3052, Australia
[4] Univ Melbourne, Royal Childrens Hosp, Genet Hlth Serv Victoria, Parkville, Vic 3052, Australia
[5] Univ Melbourne, Dept Paediat, Parkville, Vic 3052, Australia
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2012年 / 1817卷 / 06期
基金
澳大利亚研究理事会; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
Mitochondria; Respiratory chain; Complex I; Complex I deficiency; Assembly factor; APOPTOSIS-INDUCING FACTOR; NADH-UBIQUINONE OXIDOREDUCTASE; HEREDITARY OPTIC NEUROPATHY; BOVINE HEART-MITOCHONDRIA; CYTOCHROME-C-OXIDASE; NUCLEAR-ENCODED SUBUNITS; LEIGH-SYNDROME; OXIDATIVE-PHOSPHORYLATION; DNA MUTATION; NEUROSPORA MITOCHONDRIA;
D O I
10.1016/j.bbabio.2011.08.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I. and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:851 / 862
页数:12
相关论文
共 149 条
[1]   A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I [J].
Angerer, Heike ;
Zwicker, Klaus ;
Wumaier, Zibiernisha ;
Sokolova, Lucie ;
Heide, Heinrich ;
Steger, Mirco ;
Kaiser, Silke ;
Nuebel, Esther ;
Brutschy, Bernhard ;
Radermacher, Michael ;
Brandt, Ulrich ;
Zickermann, Volker .
BIOCHEMICAL JOURNAL, 2011, 437 :279-288
[2]   Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency [J].
Antonicka, H ;
Ogilvie, I ;
Taivassalo, T ;
Anitori, RP ;
Haller, RG ;
Vissing, J ;
Kennaway, NG ;
Shoubridge, EA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :43081-43088
[3]   Loss of apoptosis-inducing factor leads to an increase in reactive oxygen species, and an impairment of respiration that can be reversed by antioxidants [J].
Apostolova, N ;
Cervera, AM ;
Victor, VM ;
Cadenas, S ;
Sanjuan-Pla, A ;
Alvarez-Barrientos, A ;
Esplugues, JV ;
McCreath, KJ .
CELL DEATH AND DIFFERENTIATION, 2006, 13 (02) :354-357
[4]   The unique neuroradiology of complex I deficiency due to NDUFA12L defect [J].
Barghuti, Flora ;
Elian, Khaled ;
Gomori, John Moshe ;
Shaag, Avraham ;
Edvardson, Simon ;
Saada, Ann ;
Elpeleg, Orly .
MOLECULAR GENETICS AND METABOLISM, 2008, 94 (01) :78-82
[5]   Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase [J].
Belevich, I ;
Verkhovsky, MI ;
Wikström, M .
NATURE, 2006, 440 (7085) :829-832
[6]   Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome [J].
Bénit, P ;
Slama, A ;
Cartault, F ;
Giurgea, I ;
Chretien, D ;
Lebon, S ;
Marsac, C ;
Munnich, A ;
Rötig, A ;
Rustin, P .
JOURNAL OF MEDICAL GENETICS, 2004, 41 (01) :14-17
[7]   Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophlic cardiomyopathy and encephalopathy [J].
Bénit, P ;
Beugnot, R ;
Chretien, D ;
Giurgea, I ;
De Lonlay-Debeney, P ;
Issartel, JP ;
Corral-Debrinski, M ;
Kerscher, S ;
Rustin, P ;
Rötig, A ;
Munnich, A .
HUMAN MUTATION, 2003, 21 (06) :582-586
[8]   Large-scale deletion and point mutations of the nuclear NDUFV1 and NDUFS1 genes in mitochondrial complex I deficiency [J].
Bénit, P ;
Chretien, D ;
Kadhom, N ;
de Lonlay-Debeney, P ;
Cormier-Daire, V ;
Cabral, A ;
Peudenier, S ;
Rustin, P ;
Munnich, A ;
Rötig, A .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (06) :1344-1352
[9]   Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation [J].
Berger, Itai ;
Hershkovitz, Eli ;
Shaag, Avraham ;
Edvardson, Simon ;
Saada, Ann ;
Elpeleg, Orly .
ANNALS OF NEUROLOGY, 2008, 63 (03) :405-408
[10]   Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin [J].
Bourges, I ;
Ramus, C ;
de Camaret, BM ;
Beugnot, R ;
Remacle, C ;
Cardol, P ;
Hofhaus, G ;
Issartel, JP .
BIOCHEMICAL JOURNAL, 2004, 383 (03) :491-499