A Two-Stage Feature Extraction Approach for ECG Signals

被引:1
作者
Houssein, Essam H. [1 ,4 ]
Kilany, Moataz [1 ,4 ]
Hassanien, Aboul Ella [2 ,4 ]
Snasel, Vaclav [3 ]
机构
[1] Minia Univ, Fac Comp & Informat, Al Minya, Egypt
[2] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
[3] VSB TU Ostrava, Dept CS & IT4Innovat, Ostrava, Czech Republic
[4] Sci Res Grp Egypt SRGE, Cairo, Egypt
来源
PROCEEDINGS OF THE THIRD INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT-AECIA 2016 | 2018年 / 565卷
关键词
ECG; Feature extraction; Wavelet transform; Pan-Tompkins Algorithm; WAVELET-TRANSFORM; RECOGNITION; FETAL;
D O I
10.1007/978-3-319-60834-1_30
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigate various techniques of extracting features from the electrocardiogram (ECG) signal in order to analyze the ECG signals to detect the heart disease. Feature extraction, is a one of the widespread process of decompose the ECG data. This paper introduce a two-stage feature extraction approach to extract features from ECG signals for different types of arrhythmias. Firstly, Modified Pan-Tomkins Algorithm (MPTA) is implemented to remove noise and extract nine features. Then the proposed Improved Feature Extraction Algorithm (IFEA) is applied to extract additionally ten different features from the ECG signal. The MIT-BIH arrhythmia database have been used to test the proposed approach. It is obvious from the results that the proposed approach shows a high classification in terms of the following four statistical measures: Accuracy (Ac) 98.37%, Recall 48.29%, Precision 43.91%, F Measure 45.31%, and Specificity (Sp) 93.30%, respectively.
引用
收藏
页码:299 / 310
页数:12
相关论文
共 24 条
[1]   Stemming the global tsunami of cardiovascular disease [J].
Anand, Sonia S. ;
Yusuf, Salim .
LANCET, 2011, 377 (9765) :529-532
[2]  
Bawa Kritika, 2014, INT J ADV RES TECHNO, V5, P30
[3]   Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures:: A pilot study [J].
Cvetkovic, Dean ;
Ubeyli, Elif Derya ;
Cosic, Irena .
DIGITAL SIGNAL PROCESSING, 2008, 18 (05) :861-874
[4]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[5]   Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems [J].
Elgendi, Mohamed ;
Eskofier, Bjoern ;
Dokos, Socrates ;
Abbott, Derek .
PLOS ONE, 2014, 9 (01)
[6]  
Hasan MA, 2012, J APPL RES TECHNOL, V10, P835
[7]   ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features [J].
Homaeinezhad, M. R. ;
Atyabi, S. A. ;
Tavakkoli, E. ;
Toosi, H. N. ;
Ghaffari, A. ;
Ebrahimpour, R. .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) :2047-2058
[8]   A Generic and Robust System for Automated Patient-Specific Classification of ECG Signals [J].
Ince, Turker ;
Kiranyaz, Serkan ;
Gabbouj, Moncef .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (05) :1415-1426
[9]   Classification of electrocardiogram signals with support vector machines and extreme learning machine [J].
Karpagachelvi, S. ;
Arthanari, M. ;
Sivakumar, M. .
NEURAL COMPUTING & APPLICATIONS, 2012, 21 (06) :1331-1339
[10]   A new method for the extraction of fetal ECG from the composite abdominal signal [J].
Khamene, A ;
Negahdaripour, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (04) :507-516