Spatial similaritons in the (2+1)-dimensional inhomogeneous cubic-quintic nonlinear Schrodinger equation

被引:17
作者
Dai, Chao-Qing [1 ]
Ye, Jian-Feng [2 ]
Chen, Xin-Fen [3 ]
机构
[1] Zhejiang Agr & Forestry Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] Lishui Vocat & Tech Coll, Dept Informat & Electromech Engn, Lishui 323000, Zhejiang, Peoples R China
[3] Wuxi City Coll Vocat Technol, Elect & Informat Engn Dept, Wuxi 214153, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
(2+1)-dimensional inhomogeneous cubic-quintic nonlinear Schrodinger equation; Self-similar solutions; Dynamic behaviors; PARABOLIC PULSE GENERATION; SOLITARY WAVE SOLUTIONS; FUNDAMENTAL SOLITONS; OPTICAL-FIBERS; DISPERSION; COEFFICIENTS; COMPRESSION; GUIDES;
D O I
10.1016/j.optcom.2012.05.056
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Along the idea of the similarity transformation, analytical spatial similaritons to a (2+1)-dimensional inhomogeneous cubic-quintic nonlinear Schrodinger equation with distributed diffraction and gain are derived when some certain compatibility conditions are satisfied. Based on these exact solutions, we investigate dynamic behaviors of self-similar cnoidal waves and chirped similaritons in the hyperbolically and Gaussian decreasing diffraction waveguides. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3988 / 3994
页数:7
相关论文
共 39 条
[1]   Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates [J].
Abdullaev, FK ;
Konotop, VV .
PHYSICAL REVIEW A, 2003, 68 (01) :5
[2]   COUPLED NONLINEAR EVOLUTION EQUATIONS SOLVABLE VIA INVERSE SPECTRAL TRANSFORM, AND SOLITONS THAT COME BACK - BOOMERON [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1976, 16 (14) :425-433
[3]   SOLITONS IN NONUNIFORM MEDIA [J].
CHEN, HH ;
LIU, CS .
PHYSICAL REVIEW LETTERS, 1976, 37 (11) :693-697
[4]   Chirped Domain Wall Arrays and Solitary Waves in a Generalized Nonlinear Schrodinger Equation [J].
Chen Jun-Lang ;
Dai Chao-Qing ;
Wang Xiao-Gang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (02) :335-339
[5]   Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients [J].
Dai, C. Q. ;
Yang, Q. ;
He, J. D. ;
Wang, Y. Y. .
EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (01) :141-148
[6]   Quasi-two-dimensional Bose-Einstein condensates with spatially modulated cubic-quintic nonlinearities [J].
Dai, Chao-Qing ;
Wang, Deng-Shan ;
Wang, Liang-Liang ;
Zhang, Jie-Fang ;
Liu, W. M. .
ANNALS OF PHYSICS, 2011, 326 (09) :2356-2368
[7]   Exact travelling wave solutions of the discrete nonlinear Schrodinger equation and the hybrid lattice equation obtained via the exp-function method [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
PHYSICA SCRIPTA, 2008, 78 (01)
[8]   Nonautonomous spatiotemporal localized structures in the inhomogeneous optical fibers: Interaction and control [J].
Dai, Chaoqing ;
Wang, Xiaogang ;
Zhang, Jiefang .
ANNALS OF PHYSICS, 2011, 326 (03) :645-656
[9]   Exact spatial similaritons and rogons in 2D graded-index waveguides [J].
Dai, Chaoqing ;
Zhang, Jiefang .
OPTICS LETTERS, 2010, 35 (15) :2651-2653
[10]   Nonlinear similariton tunneling effect in the birefringent fiber [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Zhang, Jiefang .
OPTICS EXPRESS, 2010, 18 (16) :17548-17554