State feedback stabilization of a class of uncertain nonlinear systems on non-uniform time domains

被引:29
作者
Ben Nasser, Bacem [1 ]
Boukerrioua, Khaled [2 ]
Defoort, Michael [3 ]
Djemai, Mohamed [3 ]
Hammami, Mohamed Ali [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, POB 802, Sfax 3038, Tunisia
[2] Univ May 8, Fac Math Informat & Mat Sci, Dept Math, 1945 Guelma,POB 401, Guelma 24000, Algeria
[3] UVHC, CNRS, UMR 8201, LAMIH, F-59313 Le Mt Houy, Valenciennes, France
关键词
Time scales; Stabilization; Nonlinear systems; Exponential stability; Practical stability; LINEAR-CONTROL SYSTEMS; DYNAMIC EQUATIONS; EXPONENTIAL STABILITY; REALIZATIONS; MATRIX;
D O I
10.1016/j.sysconle.2016.08.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the stabilization problem for a class of uncertain nonlinear systems on non-uniform time domains. Some sufficient conditions are derived to design a state feedback controller for a class of uncertain nonlinear time-varying systems under vanishing perturbations. Using some Gronwall's integral inequalities, the uniform exponential stability of the closed-loop systems on arbitrary time scales, is guaranteed. Then, based on the Lyapunov theory, new sufficient conditions are proposed to derive the controller which ensures the practical stability of the closed-loop time-invariant nonlinear uncertain system under non-vanishing perturbations. Some examples illustrate these results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 40 条
[1]  
Agarwal R.P., 2000, MONOGRAPHS TXB PURE, V228
[2]  
[Anonymous], NONLINEAR DYNAMICS S
[3]  
[Anonymous], 1988, Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten
[4]  
[Anonymous], 2012, ACTA MECH AUTOM
[5]  
Aulbach B., 1990, MATH RES, V59, P9
[6]   Stability, stabilization and observers of linear control systems on time scales [J].
Bartosiewicz, Zbigniew ;
Piotrowska, Ewa ;
Wyrwas, Malgorzata .
PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, :1069-1074
[7]   Realizations of nonlinear control systems on time scales [J].
Bartosiewicz, Zbigniew ;
Pawluszewicz, Ewa .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (02) :571-575
[8]  
Bartosiewicz Z, 2006, CONTROL CYBERN, V35, P769
[9]   Static state feedback linearization of nonlinear control systems on homogeneous time scales [J].
Bartosiewicz, Zbigniew ;
Kotta, Uelle ;
Tonso, Maris ;
Wyrwas, Malgorzata .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2015, 27 (04) :523-550
[10]   On stabilisability of nonlinear systems on time scales [J].
Bartosiewicz, Zbigniew ;
Piotrowska, Ewa .
INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (01) :139-145