Exploring the Brain Information Processing Mechanisms from Functional Connectivity to Translational Applications

被引:3
作者
Kuai, Hongzhi [1 ,2 ,7 ]
Chen, Jianhui [2 ,7 ]
Tao, Xiaohui [3 ]
Imamura, Kazuyuki [4 ]
Liang, Peipeng [5 ,6 ]
Zhong, Ning [1 ,2 ,7 ]
机构
[1] Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma, Japan
[2] Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
[3] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia
[4] Maebashi Inst Technol, Maebashi, Gunma, Japan
[5] Capital Normal Univ, Sch Psychol, Beijing, Peoples R China
[6] Capital Normal Univ, Beijing Key Lab Learning & Cognit, Beijing, Peoples R China
[7] Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
来源
BRAIN INFORMATICS, BI 2021 | 2021年 / 12960卷
基金
中国国家自然科学基金;
关键词
Brain informatics; Cognitive neuroscience; Functional connectivity; Translational study; FMRI; DISCOVERY;
D O I
10.1007/978-3-030-86993-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exploring information processing mechanisms in the human brain is of significant importance to the development of artificial intelligence and translational study. In particular, essential functions of the brain, ranging from perception to thinking, are studied, with the evolution of analytical strategies from a single aspect such as a single cognitive function or experiment to the increasing demands on the multi-aspect integration. Here we introduce a systematic approach to realize an integrated understanding of the brain mechanisms with respect to cognitive functions and brain activity patterns. Our approach is driven by a conceptual brain model, performs systematic experimental design and evidential type inference that are further integrated into the method of evidence combination and fusion computing, and realizes never-ending learning. It allows comparisons among various mechanisms on a specific brain-related disease by means of machine learning. We evaluate its ability from the brain functional connectivity perspective, which has become an analytical tool for exploring information processing of connected nodes between different functional interacting brain regions, and for revealing hidden relationships that link connectivity abnormalities to mental disorders. Results show that the potential relationships on clinical signs-cognitive functions-brain activity patterns have important implications for both cognitive assessment and personalized rehabilitation.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 50 条
[31]   The changes in brain network functional gradients and dynamic functional connectivity in SeLECTS patients revealing disruptive and compensatory mechanisms in brain networks [J].
Song, Linfeng ;
Wu, Guangrong ;
Zhang, Jiaren ;
Liu, Benqing ;
Chen, Xu ;
Wang, Junjun ;
Gu, Xiaoyu ;
Tian, Binlin ;
Li, Yongzhe ;
Zhang, Anjie ;
Ma, Xuejin ;
Jiang, Lin .
FRONTIERS IN PSYCHIATRY, 2025, 16
[32]   Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising [J].
Nielsen, Ashley N. ;
Greene, Deanna J. ;
Gratton, Caterina ;
Dosenbach, Nico U. F. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. .
CEREBRAL CORTEX, 2019, 29 (06) :2455-2469
[33]   Exploring the Potential "Brain-Cognition-Behavior" Relationship in Children With ADHD Based on Resting-State Brain Local Activation and Functional Connectivity [J].
Feng, Yuan ;
Zhu, Yu ;
Guo, Xiaojie ;
Luo, Xiangsheng ;
Dang, Chen ;
Liu, Qianrong ;
Xu, Chenyang ;
Kang, Simin ;
Yin, Gaohan ;
Liang, Taizhu ;
Wang, Yufeng ;
Liu, Lu ;
Sun, Li .
JOURNAL OF ATTENTION DISORDERS, 2023, 27 (14) :1638-1649
[34]   Editorial: Investigation of brain functional connectivity from electroencephalogram data [J].
Chiarion, Giovanni ;
Safaei, Soroush ;
Valizadeh, Alireza ;
Bashivan, Pouya ;
Yeh, Chien-Hung ;
Zhang, Chuting ;
Wang, Yufei ;
Mesin, Luca .
FRONTIERS IN PHYSIOLOGY, 2022, 13
[35]   Predicting BMI From Whole-Brain Functional Connectivity [J].
Yeagle, Erin ;
Dadashkarimi, Javid ;
Duan, Vivian ;
Greene, Abigail ;
Barron, Daniel ;
Gao, Siyuan ;
Scheinost, Dustin .
BIOLOGICAL PSYCHIATRY, 2020, 87 (09) :S323-S323
[36]   Functional networks of the brain: from connectivity restoration to dynamic integration [J].
Khramov, A. E. ;
Frolov, N. S. ;
Maksimenko, V. A. ;
Kurkin, S. A. ;
Kazantsev, V. B. ;
Pisarchik, A. N. .
PHYSICS-USPEKHI, 2021, 64 (06) :584-616
[37]   Type 1 diabetes affects the brain functional connectivity underlying working memory processing [J].
Gallardo-Moreno, Geisa B. ;
Alvarado-Rodriguez, Francisco J. ;
Romo-Vazquez, Rebeca ;
Velez-Perez, Hugo ;
Gonzalez-Garrido, Andres A. .
PSYCHOPHYSIOLOGY, 2022, 59 (02)
[38]   Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model [J].
Gopinath, Kaundinya ;
Maltbie, Eric ;
Urushino, Naoko ;
Kempf, Doty ;
Howell, Leonard .
PSYCHOPHARMACOLOGY, 2016, 233 (21-22) :3673-3684
[39]   Ketamine-induced changes in connectivity of functional brain networks in awake female nonhuman primates: a translational functional imaging model [J].
Kaundinya Gopinath ;
Eric Maltbie ;
Naoko Urushino ;
Doty Kempf ;
Leonard Howell .
Psychopharmacology, 2016, 233 :3673-3684
[40]   Brain Functional Connectivity Analysis Using Single Trial EEG for Understanding Individual Mechanisms [J].
Nisar, Humaira ;
Thee, Kang Wei ;
Lim, Seng Hooi ;
Yap, Vooi Voon ;
Teh, Peh Chiong ;
Nor, Norliza Mohammad ;
Chow, Chin Moi .
2018 IEEE 14TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2018), 2018, :209-214