Exploring the Brain Information Processing Mechanisms from Functional Connectivity to Translational Applications

被引:3
作者
Kuai, Hongzhi [1 ,2 ,7 ]
Chen, Jianhui [2 ,7 ]
Tao, Xiaohui [3 ]
Imamura, Kazuyuki [4 ]
Liang, Peipeng [5 ,6 ]
Zhong, Ning [1 ,2 ,7 ]
机构
[1] Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma, Japan
[2] Beijing Univ Technol, Int WIC Inst, Beijing, Peoples R China
[3] Univ Southern Queensland, Sch Sci, Toowoomba, Qld, Australia
[4] Maebashi Inst Technol, Maebashi, Gunma, Japan
[5] Capital Normal Univ, Sch Psychol, Beijing, Peoples R China
[6] Capital Normal Univ, Beijing Key Lab Learning & Cognit, Beijing, Peoples R China
[7] Beijing Int Collaborat Base Brain Informat & Wisd, Beijing, Peoples R China
来源
BRAIN INFORMATICS, BI 2021 | 2021年 / 12960卷
基金
中国国家自然科学基金;
关键词
Brain informatics; Cognitive neuroscience; Functional connectivity; Translational study; FMRI; DISCOVERY;
D O I
10.1007/978-3-030-86993-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exploring information processing mechanisms in the human brain is of significant importance to the development of artificial intelligence and translational study. In particular, essential functions of the brain, ranging from perception to thinking, are studied, with the evolution of analytical strategies from a single aspect such as a single cognitive function or experiment to the increasing demands on the multi-aspect integration. Here we introduce a systematic approach to realize an integrated understanding of the brain mechanisms with respect to cognitive functions and brain activity patterns. Our approach is driven by a conceptual brain model, performs systematic experimental design and evidential type inference that are further integrated into the method of evidence combination and fusion computing, and realizes never-ending learning. It allows comparisons among various mechanisms on a specific brain-related disease by means of machine learning. We evaluate its ability from the brain functional connectivity perspective, which has become an analytical tool for exploring information processing of connected nodes between different functional interacting brain regions, and for revealing hidden relationships that link connectivity abnormalities to mental disorders. Results show that the potential relationships on clinical signs-cognitive functions-brain activity patterns have important implications for both cognitive assessment and personalized rehabilitation.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 50 条
[21]   FUNCTIONAL CONNECTIVITY DURING THREAT PROCESSING AND ASSOCIATIONS WITH PSYCHOPATHOLOGY IN YOUTH: A TRANSLATIONAL FMRI STUDY [J].
Grasser, Lana ;
Haller, Simone ;
Hansen, Eleanor ;
Stohr, Grace ;
Naim, Reut ;
Bui, Hong ;
Aggarwal, Nakul ;
Kenwood, Margaux ;
Williams, Lisa ;
Kalin, Ned ;
Brotman, Melissa .
NEUROPSYCHOPHARMACOLOGY, 2024, 49 :390-391
[22]   Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks [J].
Lord, Louis-David ;
Expert, Paul ;
Fernandes, Henrique M. ;
Petri, Giovanni ;
Van Hartevelt, Tim J. ;
Vaccarino, Francesco ;
Deco, Gustavo ;
Turkheimer, Federico ;
Kringelbach, Morten L. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 10
[23]   Music Listening Modulates Functional Connectivity and Information Flow in the Human Brain [J].
Karmonik, Christof ;
Brandt, Anthony ;
Anderson, Jeff R. ;
Brooks, Forrest ;
Lytle, Julie ;
Silverman, Elliott ;
Frazier, Jefferson Todd .
BRAIN CONNECTIVITY, 2016, 6 (08) :632-641
[24]   EXPLORING FUNCTIONAL BRAIN DYNAMICS VIA A BAYESIAN CONNECTIVITY CHANGE POINT MODEL [J].
Lian, Zhichao ;
Li, Xiang ;
Xing, Jianchuan ;
Lv, Jinglei ;
Jiang, Xi ;
Zhu, Dajiang ;
Zhang, Shu ;
Xu, Jiansong ;
Potenza, Marc N. ;
Liu, Tianming ;
Zhang, Jing .
2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, :600-603
[25]   Reduction of Interhemispheric Functional Connectivity in Sensorimotor and Visual Information Processing Pathways in Schizophrenia [J].
Lang, Xu ;
Wang, Le ;
Zhuo, Chuan-Jun ;
Jia, Feng ;
Wang, Li-Na ;
Wang, Chun-Li .
CHINESE MEDICAL JOURNAL, 2016, 129 (20) :2422-2426
[26]   An open access resource for functional brain connectivity from fully awake marmosets [J].
Schaeffer, David J. ;
Klassen, L. Martyn ;
Hori, Yuki ;
Tian, Xiaoguang ;
Szczupak, Diego ;
Yen, Cecil Chern-Chyi ;
Clery, Justine C. ;
Gilbert, Kyle M. ;
Gati, Joseph S. ;
Menon, Ravi S. ;
Liu, CiRong ;
Everling, Stefan ;
Silva, Afonso C. .
NEUROIMAGE, 2022, 252
[27]   The Prediction of Brain Activity from Connectivity: Advances and Applications [J].
Bernstein-Eliav, Michal ;
Tavor, Ido .
NEUROSCIENTIST, 2024, 30 (03) :367-377
[28]   Emergence of Higher-Order Functional Brain Connectivity with Hypergraph Signal Processing [J].
Bispo, Breno C. ;
Santos, Fernando A. N. ;
de Oliveira Neto, Jose R. ;
Lima, Juliano B. .
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, :1332-1336
[29]   Information load dynamically modulates functional brain connectivity during narrative listening [J].
Mastrandrea, Rossana ;
Cecchetti, Luca ;
Lettieri, Giada ;
Handjaras, Giacomo ;
Leo, Andrea ;
Papale, Paolo ;
Gili, Tommaso ;
Martini, Nicola ;
Della Latta, Daniele ;
Chiappino, Dante ;
Pietrini, Pietro ;
Ricciardi, Emiliano .
SCIENTIFIC REPORTS, 2023, 13 (01)
[30]   Investigation of brain functional connectivity to assess cognitive control over cue-processing in Alcohol Use Disorder [J].
Strosche, Alicia ;
Zhang, Xiaochu ;
Kirsch, Martina ;
Hermann, Derik ;
Ende, Gabriele ;
Kiefer, Falk ;
Vollstaedt-Klein, Sabine .
ADDICTION BIOLOGY, 2021, 26 (01)