The asymptotic distribution theory of bivariate order statistics

被引:13
作者
Barakat, HM [1 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, Zagazig, Egypt
关键词
bivariate order statistics; exceedance of level; increasing rank;
D O I
10.1023/A:1014660811052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper the limit distribution function (d.f.) of general bivariate order statistics (o.s.) (extreme, intermediate and central) is studied by the notion of the exceedances of levels and characteristic function (c.f.) technique. The advantage of this approach is to give a simple and unified method to derive the limit d.f. of any bivariate o.s. The conditions under which the limit d.f. splits into the product of the limit marginals are obtained. Some illustrative examples are given.
引用
收藏
页码:487 / 497
页数:11
相关论文
共 26 条
[1]  
BABU GJ, 1988, MULTIVARIATE STAT PR, P15
[2]   LIMIT-THEOREMS FOR LOWER-UPPER EXTREME VALUES FROM 2-DIMENSIONAL DISTRIBUTION FUNCTION [J].
BARAKAT, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 24 (01) :69-79
[3]   Asymptotic properties of bivariate random extremes [J].
Barakat, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 61 (02) :203-217
[4]   ORDERING OF MULTIVARIATE DATA [J].
BARNETT, V .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1976, 139 :318-354
[5]  
BILLINGSLEY P, 1995, PROABABILITY MEASUSR
[6]  
DEOLIVEIRA JT, 1959, LISBOA SER 2, V7, P219
[7]  
DEOLIVEIRA JT, 1970, TRABAJOS ESTADISTICA, V21, P107
[8]  
DEOLIVEIRA JT, 1965, PORT MATH, V24, P145
[9]   ASSOCIATION OF RANDOM VARIABLES WITH APPLICATIONS [J].
ESARY, JD ;
PROSCHAN, F ;
WALKUP, DW .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (05) :1466-&
[10]  
FINKELSHTEIN BV, 1953, DOKL AKAD NAUK SSSR+, V91, P209