Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images

被引:35
作者
Barbosa, Daniel C. [1 ]
Roupar, Dalila B. [1 ]
Ramos, Jaime C. [2 ]
Tavares, Adriano C. [1 ]
Lima, Carlos S. [1 ]
机构
[1] Univ Minho, Ind Elect Dept, P-4719 Braga, Portugal
[2] Hosp Santo Antonio dos Capuchos, Dept Gastroenterol, Lisbon, Portugal
关键词
METHODOLOGIES;
D O I
10.1186/1475-925X-11-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. Method: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. Results: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
[Anonymous], 2003, Hosp Physician
[2]  
[Anonymous], 2004, Introduction to Machine Learning
[3]  
Arvis V, 2004, IMAGE ANAL STEREOL, V23, P6372
[4]  
Barbosa D., 2008, 4th European Conference of the International Federation for Medical and Biological Engineering - ECIFMBE 2008, P200
[5]  
Barbosa D., 2010, International Journal of Tomography Statistics, V14, P41
[6]   Detection of Small Bowel Tumors in Capsule Endoscopy Frames Using Texture Analysis based on the Discrete Wavelet Transform [J].
Barbosa, Daniel J. C. ;
Ramos, Jaime ;
Lima, Carlos S. .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :3012-+
[7]   Automated topographic segmentation and transit time estimation in endoscopic capsule exams [J].
Cunha, J. P. Silva ;
Coimbra, A. ;
Campos, P. ;
Soares, J. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (01) :19-27
[8]  
de Franchis Roberto, 2004, Gastrointest Endosc Clin N Am, V14, P139, DOI 10.1016/j.giec.2003.10.006
[9]   Capsule endoscopy in 2005: Facts and perspectives [J].
Delvaux, M ;
Gay, G .
BEST PRACTICE & RESEARCH CLINICAL GASTROENTEROLOGY, 2006, 20 (01) :23-39
[10]  
Gay G, 1998, ATLAS ENTEROSCOPY, P5154