Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms

被引:0
|
作者
Tong, Hao [1 ]
Zhang, Shuyi [1 ]
Huang, Changwu [1 ]
Yao, Xin [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Univ Key Lab Evolving Intelligent Syst Guangdong, Shenzhen 518055, Peoples R China
来源
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019) | 2019年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Knowledge transfer; Auto parameter tuning; Algorithm portfolio; Evolutionary algorithm; GLOBAL OPTIMIZATION; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms' performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm's parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm's parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm's performance and reduce its optimization risk as well as the algorithm's parametertuning time.
引用
收藏
页码:1849 / 1856
页数:8
相关论文
共 50 条
  • [21] Parameter Control in Evolutionary Algorithms: Trends and Challenges
    Karafotias, Giorgos
    Hoogendoorn, Mark
    Eiben, A. E.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (02) : 167 - 187
  • [22] Evolutionary Algorithms for Parameter Estimation of Metabolic Systems
    Lebedik, Anastasia Slustikova
    Zelinka, Ivan
    Advances in Intelligent Systems and Computing, 2013, 210 : 201 - 209
  • [23] Comparing Parameter Tuning Methods for Evolutionary Algorithms
    Smit, S. K.
    Eiben, A. E.
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 399 - 406
  • [24] Parameter tuning for configuring and analyzing evolutionary algorithms
    Eiben, A. E.
    Smit, S. K.
    SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 19 - 31
  • [25] Tuning of Multiple Parameter Sets in Evolutionary Algorithms
    Andersson, Martin
    Bandaru, Sunith
    Ng, Amos H. C.
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 533 - 540
  • [26] Correction to: Investigating the parameter space of evolutionary algorithms
    Moshe Sipper
    Weixuan Fu
    Karuna Ahuja
    Jason H. Moore
    BioData Mining, 12
  • [27] Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review
    Metaxiotis, K.
    Liagkouras, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (14) : 11685 - 11698
  • [28] Stock Trading System Based on Portfolio Beta and Evolutionary Algorithms
    Chen, Yan
    2012 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING & ECONOMICS (CIFER), 2012, : 372 - 379
  • [29] Software project portfolio optimization with advanced multiobjective evolutionary algorithms
    Kremmel, Thomas
    Kubalik, Jiri
    Biffl, Stefan
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 1416 - 1426
  • [30] Which algorithm should I choose: An evolutionary algorithm portfolio approach
    Yuen, Shiu Yin
    Chow, Chi Kin
    Zhang, Xin
    Lou, Yang
    APPLIED SOFT COMPUTING, 2016, 40 : 654 - 673