Algorithm Portfolio for Parameter Tuned Evolutionary Algorithms

被引:0
|
作者
Tong, Hao [1 ]
Zhang, Shuyi [1 ]
Huang, Changwu [1 ]
Yao, Xin [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Univ Key Lab Evolving Intelligent Syst Guangdong, Shenzhen 518055, Peoples R China
来源
2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019) | 2019年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Knowledge transfer; Auto parameter tuning; Algorithm portfolio; Evolutionary algorithm; GLOBAL OPTIMIZATION; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary algorithms' performance can be enhanced significantly by using suitable parameter configurations when solving optimization problems. Most existing parametertuning methods are inefficient, which tune algorithm's parameters using whole benchmark function set and only obtain one parameter configuration. Moreover, the only obtained parameter configuration is likely to fail when solving different problems. In this paper, we propose a framework that applying portfolio for parameter-tuned algorithm (PPTA) to address these challenges. PPTA uses the parameter-tuned algorithm to tune algorithm's parameters on one instance of each problem category, but not to all functions in the benchmark. As a result, it can obtain one parameter configuration for each problem category. Then, PPTA combines several instantiations of the same algorithms with different tuned parameters by portfolio method to decrease the risk of solving unknown problems. In order to analyse the performance of PPTA framework, we embed several test algorithms (i.e. GA, DE and PSO) into PPTA framework constructing algorithm instances. And the PPTA instances are compared with default test algorithms on BBOB2009 and CEC2005 benchmark functions. The experimental results has shown PPTA framework can significantly enhance the basic algorithm's performance and reduce its optimization risk as well as the algorithm's parametertuning time.
引用
收藏
页码:1849 / 1856
页数:8
相关论文
共 50 条
  • [1] Algorithm Portfolio for Individual-based Surrogate-Assisted Evolutionary Algorithms
    Tong, Hao
    Liu, Jialin
    Yao, Xin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 943 - 950
  • [2] Parameter control in evolutionary algorithms
    Eiben, AE
    Hinterding, R
    Michalewicz, Z
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) : 124 - 141
  • [3] Parameter control in evolutionary algorithms
    Eiben, A. E.
    Michalewicz, Z.
    Schoenauer, M.
    Smith, J. E.
    PARAMETER SETTING IN EVOLUTIONARY ALGORITHMS, 2007, 54 : 19 - +
  • [4] Solution to the Social Portfolio Problem by Evolutionary Algorithms
    Rivera, Gilberto
    Gomez, Claudia
    Cruz, Laura
    Garcia, Rogelio
    Balderas, Fausto A.
    Fernandez, Eduardo R.
    Lopez, Fernando
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2012, 3 (02): : 21 - 30
  • [5] Adaptive evolutionary algorithms for portfolio selection problems
    Filograsso, Gianni
    di Tollo, Giacomo
    COMPUTATIONAL MANAGEMENT SCIENCE, 2023, 20 (01)
  • [6] Adaptive evolutionary algorithms for portfolio selection problems
    Gianni Filograsso
    Giacomo di Tollo
    Computational Management Science, 2023, 20
  • [7] Investigating the parameter space of evolutionary algorithms
    Moshe Sipper
    Weixuan Fu
    Karuna Ahuja
    Jason H. Moore
    BioData Mining, 11
  • [8] Investigating the parameter space of evolutionary algorithms
    Sipper, Moshe
    Fu, Weixuan
    Ahuja, Karuna
    Moore, Jason H.
    BIODATA MINING, 2018, 11
  • [9] Structure and Parameter Identification with Evolutionary Algorithms
    Braun, Jan
    Krettek, Johannes
    Hoffmann, Frank
    Bertram, Torsten
    Lausch, Horst
    Schoppel, Georg
    AT-AUTOMATISIERUNGSTECHNIK, 2011, 59 (06) : 340 - 352
  • [10] An Overview of Evolutionary Algorithms for Parameter Optimization
    Baeck, Thomas
    Schwefel, Hans-Paul
    EVOLUTIONARY COMPUTATION, 1993, 1 (01) : 1 - 23