Radiomics and deep learning methods for the prediction of 2-year overall survival in LUNG1 dataset

被引:23
作者
Braghetto, Anna [1 ,2 ]
Marturano, Francesca [3 ]
Paiusco, Marta [3 ]
Baiesi, Marco [1 ,2 ]
Bettinelli, Andrea [3 ,4 ]
机构
[1] Univ Padua, Phys & Astron Dept Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy
[2] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] IRCCS, Med Phys Dept, Veneto Inst Oncol IOV, Padua, Italy
[4] Univ Padua, Dept Informat Engn, Padua, Italy
关键词
CANCER;
D O I
10.1038/s41598-022-18085-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we tested and compared radiomics and deep learning-based approaches on the public LUNG1 dataset, for the prediction of 2-year overall survival (OS) in non-small cell lung cancer patients. Radiomic features were extracted from the gross tumor volume using Pyradiomics, while deep features were extracted from bi-dimensional tumor slices by convolutional autoencoder. Both radiomic and deep features were fed to 24 different pipelines formed by the combination of four feature selection/reduction methods and six classifiers. Direct classification through convolutional neural networks (CNNs) was also performed. Each approach was investigated with and without the inclusion of clinical parameters. The maximum area under the receiver operating characteristic on the test set improved from 0.59, obtained for the baseline clinical model, to 0.67 +/- 0.03, 0.63 +/- 0.03 and 0.67 +/- 0.02 for models based on radiomic features, deep features, and their combination, and to 0.64 +/- 0.04 for direct CNN classification. Despite the high number of pipelines and approaches tested, results were comparable and in line with previous works, hence confirming that it is challenging to extract further imaging-based information from the LUNG1 dataset for the prediction of 2-year OS.
引用
收藏
页数:9
相关论文
共 25 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Initial evaluation of the patient with lung cancer - Symptoms, signs, laboratory tests, and paraneoplastic syndromes [J].
Beckles, MA ;
Spiro, SG ;
Colice, GL ;
Rudd, RM .
CHEST, 2003, 123 (01) :97S-104S
[3]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[4]   Predicting survival time of lung cancer patients using radiomic analysis [J].
Chaddad, Ahmad ;
Desrosiers, Christian ;
Toews, Matthew ;
Abdulkarim, Bassam .
ONCOTARGET, 2017, 8 (61) :104393-104407
[5]   Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network [J].
Chen, Min ;
Shi, Xiaobo ;
Zhang, Yin ;
Wu, Di ;
Guizani, Mohsen .
IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (04) :750-758
[6]   Non Small Cell Lung Cancer [J].
Ettinger, David S. ;
Akerley, Wallace ;
Bepler, Gerold ;
Blum, Matthew G. ;
Chang, Andrew ;
Cheney, Richard T. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Demmy, Todd L. ;
Ganti, Apar Kishor P. ;
Govindan, Ramaswamy ;
Grannis, Frederic W., Jr. ;
Jahan, Thierry ;
Jahanzeb, Mohammad ;
Johnson, David H. ;
Kessinger, Anne ;
Komaki, Ritsuko ;
Kong, Feng-Ming ;
Kris, Mark G. ;
Krug, Lee M. ;
Le, Quynh-Thu ;
Lennes, Inga T. ;
Martins, Renato ;
O'Malley, Janis ;
Osarogiagbon, Raymond U. ;
Otterson, Gregory A. ;
Patel, Jyoti D. ;
Pisters, Katherine M. ;
Reckamp, Karen ;
Riely, Gregory J. ;
Rohren, Eric ;
Simon, George R. ;
Swanson, Scott J. ;
Wood, Douglas E. ;
Yang, Stephen C. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2010, 8 (07) :740-+
[7]  
Haarburger C., 2020, ARXIV
[8]  
Haarburger C, 2019, I S BIOMED IMAGING, P1197, DOI [10.1109/ISBI.2019.8759499, 10.1109/isbi.2019.8759499]
[9]   Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Zeleznik, Roman ;
Kumar, Avnish ;
Bussink, Johan ;
Gillies, Robert J. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
PLOS MEDICINE, 2018, 15 (11)
[10]   Cancer Statistics, 2009 [J].
Jemal, Ahmedin ;
Siegel, Rebecca ;
Ward, Elizabeth ;
Hao, Yongping ;
Xu, Jiaquan ;
Thun, Michael J. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2009, 59 (04) :225-249